Do you want to publish a course? Click here

Frame- and Segment-Level Features and Candidate Pool Evaluation for Video Caption Generation

74   0   0.0 ( 0 )
 Added by Rakshith Shetty
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We present our submission to the Microsoft Video to Language Challenge of generating short captions describing videos in the challenge dataset. Our model is based on the encoder--decoder pipeline, popular in image and video captioning systems. We propose to utilize two different kinds of video features, one to capture the video content in terms of objects and attributes, and the other to capture the motion and action information. Using these diverse features we train models specializing in two separate input sub-domains. We then train an evaluator model which is used to pick the best caption from the pool of candidates generated by these domain expert models. We argue that this approach is better suited for the current video captioning task, compared to using a single model, due to the diversity in the dataset. Efficacy of our method is proven by the fact that it was rated best in MSR Video to Language Challenge, as per human evaluation. Additionally, we were ranked second in the automatic evaluation metrics based table.



rate research

Read More

This paper introduces the system we developed for the Google Cloud & YouTube-8M Video Understanding Challenge, which can be considered as a multi-label classification problem defined on top of the large scale YouTube-8M Dataset. We employ a large set of techniques to aggregate the provided frame-level feature representations and generate video-level predictions, including several variants of recurrent neural networks (RNN) and generalized VLAD. We also adopt several fusion strategies to explore the complementarity among the models. In terms of the official metric GAP@20 (global average precision at 20), our best fusion model attains 0.84198 on the public 50% of test data and 0.84193 on the private 50% of test data, ranking 4th out of 650 teams worldwide in the competition.
In this paper, we describe the system for generating textual descriptions of short video clips using recurrent neural networks (RNN), which we used while participating in the Large Scale Movie Description Challenge 2015 in ICCV 2015. Our work builds on static image captioning systems with RNN based language models and extends this framework to videos utilizing both static image features and video-specific features. In addition, we study the usefulness of visual content classifiers as a source of additional information for caption generation. With experimental results we show that utilizing keyframe based features, dense trajectory video features and content classifier outputs together gives better performance than any one of them individually.
Long-range and short-range temporal modeling are two complementary and crucial aspects of video recognition. Most of the state-of-the-arts focus on short-range spatio-temporal modeling and then average multiple snippet-level predictions to yield the final video-level prediction. Thus, their video-level prediction does not consider spatio-temporal features of how video evolves along the temporal dimension. In this paper, we introduce a novel Dynamic Segment Aggregation (DSA) module to capture relationship among snippets. To be more specific, we attempt to generate a dynamic kernel for a convolutional operation to aggregate long-range temporal information among adjacent snippets adaptively. The DSA module is an efficient plug-and-play module and can be combined with the off-the-shelf clip-based models (i.e., TSM, I3D) to perform powerful long-range modeling with minimal overhead. The final video architecture, coined as DSANet. We conduct extensive experiments on several video recognition benchmarks (i.e., Mini-Kinetics-200, Kinetics-400, Something-Something V1 and ActivityNet) to show its superiority. Our proposed DSA module is shown to benefit various video recognition models significantly. For example, equipped with DSA modules, the top-1 accuracy of I3D ResNet-50 is improved from 74.9% to 78.2% on Kinetics-400. Codes are available at https://github.com/whwu95/DSANet.
Most approaches for video frame interpolation require accurate dense correspondences to synthesize an in-between frame. Therefore, they do not perform well in challenging scenarios with e.g. lighting changes or motion blur. Recent deep learning approaches that rely on kernels to represent motion can only alleviate these problems to some extent. In those cases, methods that use a per-pixel phase-based motion representation have been shown to work well. However, they are only applicable for a limited amount of motion. We propose a new approach, PhaseNet, that is designed to robustly handle challenging scenarios while also coping with larger motion. Our approach consists of a neural network decoder that directly estimates the phase decomposition of the intermediate frame. We show that this is superior to the hand-crafted heuristics previously used in phase-based methods and also compares favorably to recent deep learning based approaches for video frame interpolation on challenging datasets.
191 - Jiarui Xu , Xiaolong Wang 2021
Learning a good representation for space-time correspondence is the key for various computer vision tasks, including tracking object bounding boxes and performing video object pixel segmentation. To learn generalizable representation for correspondence in large-scale, a variety of self-supervised pretext tasks are proposed to explicitly perform object-level or patch-level similarity learning. Instead of following the previous literature, we propose to learn correspondence using Video Frame-level Similarity (VFS) learning, i.e, simply learning from comparing video frames. Our work is inspired by the recent success in image-level contrastive learning and similarity learning for visual recognition. Our hypothesis is that if the representation is good for recognition, it requires the convolutional features to find correspondence between similar objects or parts. Our experiments show surprising results that VFS surpasses state-of-the-art self-supervised approaches for both OTB visual object tracking and DAVIS video object segmentation. We perform detailed analysis on what matters in VFS and reveals new properties on image and frame level similarity learning. Project page is available at https://jerryxu.net/VFS
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا