No Arabic abstract
Learning a good representation for space-time correspondence is the key for various computer vision tasks, including tracking object bounding boxes and performing video object pixel segmentation. To learn generalizable representation for correspondence in large-scale, a variety of self-supervised pretext tasks are proposed to explicitly perform object-level or patch-level similarity learning. Instead of following the previous literature, we propose to learn correspondence using Video Frame-level Similarity (VFS) learning, i.e, simply learning from comparing video frames. Our work is inspired by the recent success in image-level contrastive learning and similarity learning for visual recognition. Our hypothesis is that if the representation is good for recognition, it requires the convolutional features to find correspondence between similar objects or parts. Our experiments show surprising results that VFS surpasses state-of-the-art self-supervised approaches for both OTB visual object tracking and DAVIS video object segmentation. We perform detailed analysis on what matters in VFS and reveals new properties on image and frame level similarity learning. Project page is available at https://jerryxu.net/VFS
The crux of self-supervised video representation learning is to build general features from unlabeled videos. However, most recent works have mainly focused on high-level semantics and neglected lower-level representations and their temporal relationship which are crucial for general video understanding. To address these challenges, this paper proposes a multi-level feature optimization framework to improve the generalization and temporal modeling ability of learned video representations. Concretely, high-level features obtained from naive and prototypical contrastive learning are utilized to build distribution graphs, guiding the process of low-level and mid-level feature learning. We also devise a simple temporal modeling module from multi-level features to enhance motion pattern learning. Experiments demonstrate that multi-level feature optimization with the graph constraint and temporal modeling can greatly improve the representation ability in video understanding. Code is available at https://github.com/shvdiwnkozbw/Video-Representation-via-Multi-level-Optimization.
In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).
As a newly emerging unsupervised learning paradigm, self-supervised learning (SSL) recently gained widespread attention, which usually introduces a pretext task without manual annotation of data. With its help, SSL effectively learns the feature representation beneficial for downstream tasks. Thus the pretext task plays a key role. However, the study of its design, especially its essence currently is still open. In this paper, we borrow a multi-view perspective to decouple a class of popular pretext tasks into a combination of view data augmentation (VDA) and view label classification (VLC), where we attempt to explore the essence of such pretext task while providing some insights into its design. Specifically, a simple multi-view learning framework is specially designed (SSL-MV), which assists the feature learning of downstream tasks (original view) through the same tasks on the augmented views. SSL-MV focuses on VDA while abandons VLC, empirically uncovering that it is VDA rather than generally considered VLC that dominates the performance of such SSL. Additionally, thanks to replacing VLC with VDA tasks, SSL-MV also enables an integrated inference combining the predictions from the augmented views, further improving the performance. Experiments on several benchmark datasets demonstrate its advantages.
This paper proposes to learn reliable dense correspondence from videos in a self-supervised manner. Our learning process integrates two highly related tasks: tracking large image regions emph{and} establishing fine-grained pixel-level associations between consecutive video frames. We exploit the synergy between both tasks through a shared inter-frame affinity matrix, which simultaneously models transitions between video frames at both the region- and pixel-levels. While region-level localization helps reduce ambiguities in fine-grained matching by narrowing down search regions; fine-grained matching provides bottom-up features to facilitate region-level localization. Our method outperforms the state-of-the-art self-supervised methods on a variety of visual correspondence tasks, including video-object and part-segmentation propagation, keypoint tracking, and object tracking. Our self-supervised method even surpasses the fully-supervised affinity feature representation obtained from a ResNet-18 pre-trained on the ImageNet.
Recently, contrastive learning has achieved great results in self-supervised learning, where the main idea is to push two augmentations of an image (positive pairs) closer compared to other random images (negative pairs). We argue that not all random images are equal. Hence, we introduce a self supervised learning algorithm where we use a soft similarity for the negative images rather than a binary distinction between positive and negative pairs. We iteratively distill a slowly evolving teacher model to the student model by capturing the similarity of a query image to some random images and transferring that knowledge to the student. We argue that our method is less constrained compared to recent contrastive learning methods, so it can learn better features. Specifically, our method should handle unbalanced and unlabeled data better than existing contrastive learning methods, because the randomly chosen negative set might include many samples that are semantically similar to the query image. In this case, our method labels them as highly similar while standard contrastive methods label them as negative pairs. Our method achieves comparable results to the state-of-the-art models. We also show that our method performs better in the settings where the unlabeled data is unbalanced. Our code is available here: https://github.com/UMBCvision/ISD.