Do you want to publish a course? Click here

Disentangling planetary and stellar activity features in the CoRoT-2 light curve

111   0   0.0 ( 0 )
 Added by Giovanni Bruno
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

[Abridged] Context. Stellar activity is an important source of systematic errors and uncertainties in the characterization of exoplanets. Most of the techniques used to correct for this activity focus on an ad hoc data reduction. Aims. We have developed a software for the combined fit of transits and stellar activity features in high-precision long-duration photometry. Our aim is to take advantage of the modelling to derive correct stellar and planetary parameters, even in the case of strong stellar activity. Methods. We use an analytic approach to model the light curve. The code KSint, modified by adding the evolution of active regions, is implemented into our Bayesian modelling package PASTIS. The code is then applied to the light curve of CoRoT-2. The light curve is divided in segments to reduce the number of free parameters needed by the fit. We perform a Markov chain Monte Carlo analysis in two ways. In the first, we perform a global and independent modelling of each segment of the light curve, transits are not normalized and are fitted together with the activity features, and occulted features are taken into account during the transit fit. In the second, we normalize the transits with a model of the non-occulted activity features, and then we apply a standard transit fit, which does not take the occulted features into account. Results. Our model recovers the activity features coverage of the stellar surface and different rotation periods for different features. We find variations in the transit parameters of different segments and show that they are likely due to the division applied to the light curve. Neglecting stellar activity or even only bright spots while normalizing the transits yields a $sim 1.2sigma$ larger and $2.3sigma$ smaller transit depth, respectively. The stellar density also presents up to $2.5sigma$ differences depending on the normalization technique...



rate research

Read More

Gliese 667C is an M1.5V star with a multi-planet system, including planet candidates in the habitable zone (HZ). The exact number of planets in the system is unclear, because the existing radial velocity (RV) measurements are known to contain contributions from stellar magnetic activity. Following our analysis of Gliese 581 (Robertson et al. 2014), we have analyzed the effect of stellar activity on the HARPS/HARPS-TERRA RVs of GJ 667C, finding significant RV-activity correlation when using the width (FWHM) of the HARPS cross-correlation function to trace magnetic activity. When we correct for this correlation, we confirm the detections of the previously-observed planets b and c in the system, while simultaneously ascribing the RV signal near 90 days (planet d) to an artifact of the stellar rotation. We are unable to confirm the existence of the additional RV periodicities described in Anglada-Escude et al. (2013) in our activity-corrected data.
Since the discovery of the transiting super-Earth CoRoT-7b, several investigations have yielded different results for the number and masses of planets present in the system, mainly owing to the stars high level of activity. We re-observed CoRoT-7 in January 2012 with both HARPS and CoRoT, so that we now have the benefit of simultaneous radial-velocity and photometric data. This allows us to use the off-transit variations in the stars light curve to estimate the radial-velocity variations induced by the suppression of convective blueshift and the flux blocked by starspots. To account for activity-related effects in the radial-velocities which do not have a photometric signature, we also include an additional activity term in the radial-velocity model, which we treat as a Gaussian process with the same covariance properties (and hence the same frequency structure) as the light curve. Our model was incorporated into a Monte Carlo Markov Chain in order to make a precise determination of the orbits of CoRoT-7b and CoRoT-7c. We measure the masses of planets b and c to be 4.73 +/- 0.95 Mearth and 13.56 +/- 1.08 Mearth, respectively. The density of CoRoT-7b is (6.61 +/- 1.72)(Rp/1.58 Rearth)^(-3) g.cm^(-3), which is compatible with a rocky composition. We search for evidence of an additional planet d, identified by previous authors with a period close to 9 days. We are not able to confirm the existence of a planet with this orbital period, which is close to the second harmonic of the stellar rotation at around 7.9 days. Using Bayesian model selection we find that a model with two planets plus activity-induced variations is most favoured.
To date, only 18 exoplanets with radial velocity (RV) semi-amplitudes $<2$ m/s have had their masses directly constrained. The biggest obstacle to RV detection of such exoplanets is variability intrinsic to stars themselves, e.g. nuisance signals arising from surface magnetic activity such as rotating spots and plages, which can drown out or even mimic planetary RV signals. We use Kepler-37 - known to host three transiting planets, one of which, Kepler-37d, should be on the cusp of RV detectability with modern spectrographs - as a case study in disentangling planetary and stellar activity signals. We show how two different statistical techniques - one seeking to identify activity signals in stellar spectra, and another to model activity signals in extracted RVs and activity indicators - can enable detection of the hitherto elusive Kepler-37d. Moreover, we show that these two approaches can be complementary, and in combination, facilitate a definitive detection and precise characterisation of Kepler-37d. Its RV semi-amplitude of $1.22pm0.31$ m/s (mass $5.4pm1.4$ $M_oplus$) is formally consistent with TOI-178bs $1.05^{+0.25}_{-0.30}$ m/s, the latter being the smallest detected RV signal of any transiting planet to date, though dynamical simulations suggest Kepler-37ds mass may be on the lower end of our $1sigma$ credible interval. Its consequent density is consistent with either a water-world or that of a gaseous envelope ($sim0.4%$ by mass) surrounding a rocky core. Based on RV modelling and a re-analysis of Kepler-37 TTVs, we also argue that the putative (non-transiting) planet Kepler-37e should probably be stripped of its confirmed status.
The star CoRoT102781750 reveals a puzzle, showing a very complex and altering variation in different `CoRoT colours. We established without doubt that more than a single star was situated within the CoRoT mask. Using a search for periodicity as a tool, our aim is to disentangle the composite light curve and identify the type of sources behind the variability. Both flux and magnitude light curves were used. Conversion was applied after a jump- and trend-filtering algorithm. We applied different types of period-finding techniques including MuFrAn and Period04. The amplitude and phase peculiarities obtained from the independent analysis of CoRoT r, g, and b colours and ground-based follow-up photometric observations ruled out the possibility of either a background monoperiodic or a Blazhko type RR Lyrae star being in the mask. The main target, an active star, shows at least two spotted areas that reveal a $P_rot = 8.8$ hours $(f_0 = 2.735$ c d$^{-1})$ mean rotation period. The evolution of the active regions helped to derive a period change of $dP/dt = 1.6cdot 10^{-6}$ (18 s over the run) and a differential rotation of $alpha = DeltaOmega/Omega = 0.0074$. The $0fm 015$ linear decrease and a local $0fm 005$ increase in the dominant periods amplitude are interpreted as a decay of the old spotted region and an appearance of a new one, respectively. A star that is detected only in the CoRoT b domain shows a $f_1 = 7.172$ c d$^{-1}$ pulsation connected to a $14fd 83$ periodicity via an equidistant triplet structure. The best explanation for our observation is a $beta$ Cep star with a corotating dust disk.
Stellar activity can induce signals in the radial velocities of stars, complicating the detection of orbiting low-mass planets. We present a method to determine the number of planetary signals present in radial-velocity datasets of active stars, using only radial-velocity observations. Instead of considering separate fits with different number of planets, we use a birth-death Markov chain Monte Carlo algorithm to infer the posterior distribution for the number of planets in a single run. In a natural way, the marginal distributions for the orbital parameters of all planets are also inferred. This method is applied to HARPS data of CoRoT-7. We confidently recover both CoRoT-7b and CoRoT-7c although the data show evidence for additional signals.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا