No Arabic abstract
We study numerically the spin-1/2 XXZ model in a field on an infinite Kagome lattice. We use different algorithms based on infinite Projected Entangled Pair States (iPEPS) for this, namely: (i) with simplex tensors and 9-site unit cell, and (ii) coarse-graining three spins in the Kagome lattice and mapping it to a square-lattice model with nearest-neighbor interactions, with usual PEPS tensors, 6- and 12-site unit cells. Similarly to our previous calculation at the SU(2)-symmetric point (Heisenberg Hamiltonian), for any anisotropy from the Ising limit to the XY limit, we also observe the emergence of magnetization plateaus as a function of the magnetic field, at $m_z = frac{1}{3}$ using 6- 9- and 12-site PEPS unit cells, and at $m_z = frac{1}{9}, frac{5}{9}$ and $frac{7}{9}$ using a 9-site PEPS unit cell, the later set-up being able to accommodate $sqrt{3} times sqrt{3}$ solid order. We also find that, at $m_z = frac{1}{3}$, (lattice) nematic and $sqrt{3} times sqrt{3}$ VBC-order states are degenerate within the accuracy of the 9-site simplex-method, for all anisotropy. The 6- and 12-site coarse-grained PEPS methods produce almost-degenerate nematic and $1 times 2$ VBC-Solid orders. Within our accuracy, the 6-site coarse-grained PEPS method gives slightly lower energies, which can be explained by the larger amount of entanglement this approach can handle, even when the PEPS unit-cell is not commensurate with the expected ground state. Furthermore, we do not observe chiral spin liquid behaviors at and close to the XY point, as has been recently proposed. Our results are the first tensor network investigations of the XXZ spin chain in a field, and reveal the subtle competition between nearby magnetic orders in numerical simulations of frustrated quantum antiferromagnets, as well as the delicate interplay between energy optimization and symmetry in tensor networks.
Frustrated spin systems on Kagome lattices have long been considered to be a promising candidate for realizing exotic spin liquid phases. Recently, there has been a lot of renewed interest in these systems with the discovery of materials such as Volborthite and Herbertsmithite that have Kagome like structures. In the presence of an external magnetic field, these frustrated systems can give rise to magnetization plateaus of which the plateau at $m=frac{1}{3}$ is considered to be the most prominent. Here we study the problem of the antiferromagnetic spin-1/2 quantum XXZ Heisenberg model on a Kagome lattice by using a Jordan-Wigner transformation that maps the spins onto a problem of fermions coupled to a Chern-Simons gauge field. This mapping relies on being able to define a consistent Chern-Simons term on the lattice. Using a recently developed method to rigorously extend the Chern-Simons term to the frustrated Kagome lattice we can now formalize the Jordan-Wigner transformation on the Kagome lattice. We then discuss the possible phases that can arise at the mean-field level from this mapping and focus specifically on the case of $frac{1}{3}$-filling ($m=frac{1}{3}$ plateau) and analyze the effects of fluctuations in our theory. We show that in the regime of $XY$ anisotropy the ground state at the $1/3$ plateau is equivalent to a bosonic fractional quantum Hall Laughlin state with filling fraction $1/2$ and that at the $5/9$ plateau it is equivalent to the first bosonic Jain daughter state at filling fraction $2/3$.
Using variational wave functions and Monte Carlo techniques, we study the antiferromagnetic Heisenberg model with first-neighbor $J_1$ and second-neighbor $J_2$ antiferromagnetic couplings on the honeycomb lattice. We perform a systematic comparison of magnetically ordered and nonmagnetic states (spin liquids and valence-bond solids) to obtain the ground-state phase diagram. Neel order is stabilized for small values of the frustrating second-neighbor coupling. Increasing the ratio $J_2/J_1$, we find strong evidence for a continuous transition to a nonmagnetic phase at $J_2/J_1 approx 0.23$. Close to the transition point, the Gutzwiller-projected uniform resonating valence bond state gives an excellent approximation to the exact ground-state energy. For $0.23 lesssim J_2/J_1 lesssim 0.4$, a gapless $Z_2$ spin liquid with Dirac nodes competes with a plaquette valence-bond solid. In contrast, the gapped spin liquid considered in previous works has significantly higher variational energy. Although the plaquette valence-bond order is expected to be present as soon as the Neel order melts, this ordered state becomes clearly favored only for $J_2/J_1 gtrsim 0.3$. Finally, for $0.36 lesssim J_2/J_1 le 0.5$, a valence-bond solid with columnar order takes over as the ground state, being also lower in energy than the magnetic state with collinear order. We perform a detailed finite-size scaling and standard data collapse analysis, and we discuss the possibility of a deconfined quantum critical point separating the Neel antiferromagnet from the plaquette valence-bond solid.
We study a spin-1/2 XXZ model with a four-spin interaction on a two-leg ladder. By means of effective field theory and matrix product state calculations, we obtain rich ground-state phase diagrams that consist of eight distinct gapped phases. Four of them exhibit spontaneous symmetry breaking with either a magnetic or valence-bond-solid (VBS) long-range order. The other four are featureless, i.e., the bulk ground state is unique and does not break any symmetry. The featureless phases include the rung singlet (RS) and Haldane phases as well as their variants, the RS* and Haldane* phases, in which twisted singlet pairs are formed between the two legs. We argue and demonstrate that Gaussian transitions with the central charge c=1 occur between the featureless phases and between the ordered phases while Ising transitions with c=1/2 occur between the featureless and ordered phases. The two types of transition lines cross at the SU(2)-symmetric point, where the criticality is described by the SU(2)_2 Wess-Zumino-Witten theory with c=3/2. The RS-Haldane* and RS*-Haldane transitions give examples of topological phase transitions. Interestingly, the RS* and Haldane* phases, which have highly anisotropic nature, appear even in the vicinity of the isotropic case. We demonstrate that all the four featureless phases are distinguished by topological indices in the presence of certain symmetries.
We give a complete classification of fully symmetric as well as chiral $mathbb{Z}_2$ quantum spin liquids on the pyrochlore lattice using a projective symmetry group analysis of Schwinger boson mean-field states. We find 50 independent ansatze, including the 12 fully symmetric nearest-neighbor $mathbb{Z}_2$ spin liquids that have been classified by Liu et al. [https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.075125]. For each class we specify the most general symmetry-allowed mean-field Hamiltonian. Additionally, we test the properties of a subset of the spin liquid ansatze by solving the mean-field equations for the spin-$1/2$ XXZ model near the antiferromagnetic Heisenberg point. We find that the ansatz with the lowest energy at mean-field level is a chiral spin liquid that breaks the screw symmetry of the lattice modulo time reversal symmetry. This state has a different symmetry than the previously studied monopole flux state. Moreover, this chiral spin liquid state has a substantially lower energy than all other symmetric spin liquid states, suggesting that it could be a stable ground state beyond the mean-field approximation employed in this work.
We report magnetization, electron spin resonance (ESR), and muon spin relaxation ($mu $SR) measurements on single crystals of the $S=1/2$ (Cu$% ^{+2}$) kagom{e} compound Cu(1,3-benzendicarboxylate). The $mu $SR is carried to temperatures as low as 45 mK. The spin Hamiltonian parameters are determined from the analysis of the magnetization and ESR data. We find that this compound has anisotropic ferromagnetic interactions. Nevertheless, no spin freezing is observed even at temperatures two orders of magnitude lower than the coupling constants. In light of this finding, the relation between persistent spin dynamics and spin liquid are reexamined.