No Arabic abstract
We describe stochastic calculus in the context of processes that are driven by an adapted point process of locally finite intensity and are differentiable between jumps. This includes Markov chains as well as non-Markov processes. By analogy with It^o processes we define the drift and diffusivity, which we then use to describe a general sample path estimate. We then give several examples, including ODE approximation, processes with linear drift, first passage times, and an application to the stochastic logistic model.
Using time-reversal, we introduce a stochastic integral for zero-energy additive functionals of symmetric Markov processes, extending earlier work of S. Nakao. Various properties of such stochastic integrals are discussed and an It^{o} formula for Dirichlet processes is obtained.
This paper describes the structure of solutions to Kolmogorovs equations for nonhomogeneous jump Markov processes and applications of these results to control of jump stochastic systems. These equations were studied by Feller (1940), who clarified in 1945 in the errata to that paper that some of its results covered only nonexplosive Markov processes. We present the results for possibly explosive Markov processes. The paper is based on the invited talk presented by the authors at the International Conference dedicated to the 200th anniversary of the birth of P. L.~Chebyshev.
We consider a real-valued diffusion process with a linear jump term driven by a Poisson point process and we assume that the jump amplitudes have a centered density with finite moments. We show upper and lower estimates for the density of the solution in the case that the jump amplitudes follow a Gaussian or Laplacian law. The proof of the lower bound uses a general expression for the density of the solution in terms of the convolution of the density of the continuous part and the jump amplitude density. The upper bound uses an upper tail estimate in terms of the jump amplitude distribution and techniques of the Malliavin calculus in order to bound the density by the tails of the solution. We also extend the lower bounds to the multidimensional case.
The work concerns a class of path-dependent McKean-Vlasov stochastic differential equations with unknown parameters. First, we prove the existence and uniqueness of these equations under non-Lipschitz conditions. Second, we construct maximum likelihood estimators of these parameters and then discuss their strong consistency. Third, a numerical simulation method for the class of path-dependent McKean-Vlasov stochastic differential equations is offered. Moreover, we estimate the errors between solutions of these equations and that of their numerical equations. Finally, we give an example to explain our result.
In this paper we introduce non-decreasing jump processes with independent and time non-homogeneous increments. Although they are not Levy processes, they somehow generalize subordinators in the sense that their Laplace exponents are possibly different Bernv{s}tein functions for each time $t$. By means of these processes, a generalization of subordinate semigroups in the sense of Bochner is proposed. Because of time-inhomogeneity, two-parameter semigroups (propagators) arise and we provide a Phillips formula which leads to time dependent generators. The inverse processes are also investigated and the corresponding governing equations obtained in the form of generalized variable order fractional equations. An application to a generalized subordinate Brownian motion is also examined.