No Arabic abstract
We use electronic Raman scattering to study the low-energy excitations in BaFe$_2$(As$_{0.5}$P$_{0.5}$)$_2$ ($T_c approx 16$ K) samples. In addition to a superconducting pair breaking peak (2$Delta=6.7$ meV) in the A$_{1g}$ channel with a linear tail towards zero energy, suggesting a nodal gap structure, we detect spectral features associated to Pomeranchuk oscillations in the A$_{1g}$, B$_{1g}$ and B$_{2g}$ channels. We argue that the small Fermi energy of the system is an essential condition for these Pomeranchuk oscillations to be underdamped. The Pomeranchuk oscillations have the same frequencies in the B$_{1g}$ and B$_{2g}$ channels, which we explain by the mixing of these symmetries resulting from the removal of the $sigma_v$ and $sigma_v$ symmetry planes due to a large As/P disorder. Interestingly, we show that the temperature at which the peaks corresponding to the Pomeranchuk oscillations get underdamped is consistent with the non-Fermi liquid to Femi liquid crossover determined by transport, suggesting that the Pomeranchuk instability plays an important role in the low-energy physics of the Fe-based superconductors.
We revisit the electronic structure of BaFe$_2$As$_2$, the archetypal parent compound of the Fe-based superconductors, using angle-resolved photoemission spectroscopy (ARPES). Our high-resolution measurements of samples detwinned by the application of a mechanical strain reveal a highly anisotropic 3D Fermi surface in the low temperature magnetic phase. By comparison of the observed dispersions with ab-initio calculations, we argue that overall it is magnetism, rather than orbital ordering, which is the dominant effect, reconstructing the electronic structure across the Fe 3d bandwidth. Finally, we measure band dispersions directly from within one domain without applying strain to the sample, by using the sub-micron focused beam spot of a nano-ARPES instrument.
We report a comprehensive study of the spin ladder compound BaFe$_2$S$_{2.5}$Se$_{0.5}$ using neutron diffraction, inelastic neutron scattering, high pressure synchrotron diffraction, and high pressure transport techniques. We find that BaFe$_2$S$_{2.5}$Se$_{0.5}$ possesses the same $Cmcm$ structure and stripe antiferromagnetic order as does BaFe$_2$S$_3$, but with a reduced N{{e}}el temperature of $T_N=98$ K compared to 120 K for the undoped system, and a slightly increased ordered moment of 1.40$mu_B$ per iron. The low-energy spin excitations in BaFe$_2$S$_{2.5}$Se$_{0.5}$ are likewise similar to those observed in BaFe$_2$S$_{3}$. However, unlike the reports of superconductivity in BaFe$_2$S$_3$ below $T_c sim 14$~K under pressures of 10~GPa or more, we observe no superconductivity in BaFe$_2$S$_{2.5}$Se$_{0.5}$ at any pressure up to 19.7~GPa. In contrast, the resistivity exhibits an upturn at low temperature under pressure. Furthermore, we show that additional high-quality samples of BaFe$_2$S$_3$ synthesized for this study likewise fail to become superconducting under pressure, instead displaying a similar upturn in resistivity at low temperature. These results demonstrate that microscopic, sample-specific details play an important role in determining the ultimate electronic ground state in this spin ladder system. We suggest that the upturn in resistivity at low temperature in both BaFe$_2$S$_3$ and BaFe$_2$S$_{2.5}$Se$_{0.5}$ may result from Anderson localization induced by S vacancies and random Se substitutions, enhanced by the quasi-one-dimensional ladder structure.
The three-dimensional Fermi surface morphology of superconducting BaFe_2(As_0.37}P_0.63)_2 with T_c=9K, is determined using the de Haas-van Alphen effect (dHvA). The inner electron pocket has a similar area and k_z interplane warping to the observed hole pocket, revealing that the Fermi surfaces are geometrically well nested in the (pi,pi) direction. These results are in stark contrast to the Fermiology of the non-superconducting phosphides (x=1), and therefore suggests an important role for nesting in pnictide superconductivity.
We show that the Fermi surface (FS) in the antiferromagnetic phase of BaFe$_2$As$_2$ is composed of one hole and two electron pockets, all of which are three dimensional and closed, in sharp contrast to the FS observed by angle-resolved photoemission spectroscopy. Considerations on the carrier compensation and Sommerfeld coefficient rule out existence of unobserved FS pockets of significant sizes. A standard band structure calculation reasonably accounts for the observed FS, despite the overestimated ordered moment. The mass enhancement, the ratio of the effective mass to the band mass, is 2--3.
Unconventional superconductivity arises at the border between the strong coupling regime with local magnetic moments and the weak coupling regime with itinerant electrons, and stems from the physics of criticality that dissects the two. Unveiling the nature of the quasiparticles close to quantum criticality is fundamental to understand the phase diagram of quantum materials. Here, using resonant inelastic x-ray scattering (RIXS) and Fe-K$_beta$ emission spectroscopy (XES), we visualize the coexistence and evolution of local magnetic moments and collective spin excitations across the superconducting dome in isovalently-doped BaFe$_2$(As$_{1-x}$P$_x$)$_2$ (0.00$leq$x$leq0.$52). Collective magnetic excitations resolved by RIXS are gradually hardened, whereas XES reveals a strong suppression of the local magnetic moment upon doping. This relationship is captured by an intermediate coupling theory, explicitly accounting for the partially localized and itinerant nature of the electrons in Fe pnictides. Finally, our work identifies a local-itinerant spin fluctuations channel through which the local moments transfer spin excitations to the particle-hole (paramagnons) continuum across the superconducting dome.