No Arabic abstract
We address the characterization of qubit chains and assess the performances of local measurements compared to those provided by Feynman probes, i.e. nonlocal measurements realized by coupling a single qubit regis- ter to the chain. We show that local measurements are suitable to estimate small values of the coupling and that a Bayesian strategy may be successfully exploited to achieve optimal precision. For larger values of the coupling Bayesian local strategies do not lead to a consistent estimate. In this regime, Feynman probes may be exploited to build a consistent Bayesian estimator that saturates the Cramer-Rao bound, thus providing an effective characterization of the chain. Finally, we show that ultimate bounds to precision, i.e. saturation of the quantum Cramer-Rao bound, may be achieved by a two-step scheme employing Feynman probes followed by local measurements.
Non-equilibrium states of quantum systems in contact with thermal baths help telling environments with different temperatures or different statistics apart. We extend these studies to a more generic problem that consists in discriminating between two baths with disparate constituents at unequal temperatures. Notably there exist temperature regimes in which the presence of coherence in the initial state preparation is beneficial for the discrimination capability. We also find that non-equilibrium states are not universally optimal, and detail the conditions in which it becomes convenient to wait for complete thermalisation of the probe. These concepts are illustrated in a linear optical simulation.
Active optical media leading to interaction Hamiltonians of the form $ H = tilde{lambda}, (a + a^{dagger})^{zeta}$ represent a crucial resource for quantum optical technology. In this paper, we address the characterization of those nonlinear media using quantum probes, as opposed to semiclassical ones. In particular, we investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tilde{lambda}$ and of the nonlinearity order $zeta$. Upon using tools from quantum estimation, we show that: i) the two parameters are compatible, i.e. the may be jointly estimated without additional quantum noise; ii) the use of squeezed probes improves precision at fixed overall energy of the probe; iii) for low energy probes, squeezed vacuum represent the most convenient choice, whereas for increasing energy an optimal squeezing fraction may be determined; iv) using optimized quantum probes, the scaling of the corresponding precision with energy improves, both for individual and joint estimation of the two parameters, compared to semiclassical coherent probes. We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
In circuit-based quantum computing, the available gate set typically consists of single-qubit gates acting on each individual qubit and at least one entangling gate between pairs of qubits. In certain physical architectures, however, some qubits may be hidden and lacking direct addressability through dedicated control and readout lines, for instance because of limited on-chip routing capabilities, or because the number of control lines becomes a limiting factor for many-qubit systems. In this case, no single-qubit operations can be applied to the hidden qubits and their state cannot be measured directly. Instead, they may be controlled and read out only via single-qubit operations on connected control qubits and a suitable set of two-qubit gates. We first discuss the impact of such restricted control capabilities on the quantum volume of specific qubit coupling networks. We then experimentally demonstrate full control and measurement capabilities in a superconducting two-qubit device with local single-qubit control and iSWAP and controlled-phase two-qubit interactions enabled by a tunable coupler. We further introduce an iterative tune-up process required to completely characterize the gate set used for quantum process tomography and evaluate the resulting gate fidelities.
We address a particular instance where open quantum systems may be used as quantum probes for an emergent property of a complex system, as the temperature of a thermal bath. The inherent fragility of the quantum probes against decoherence is the key feature making the overall scheme very sensitive. The specific setting examined here is that of quantum thermometry, which aims to exploits decoherence as resource to estimate the temperature of a sample. We focus on temperature estimation for a bosonic bath at equilibrium in the Ohmic regime (ranging from sub-Ohmic to super- Ohmic), by using pairs of qubits in different initial states and interacting with different environments, consisting either of a single thermal bath, or of two independent ones at the same temperature. Our scheme involves pure dephasing of the probes, thus avoiding energy exchange with the sample and the consequent perturbation of temperature itself. We discuss the interplay between correlations among the probes and correlations within the bath, and show that entanglement improves thermometry at short times whereas, if the interaction time is not constrained, coherence rather than entanglement, is the key resource in quantum thermometry.
The transfer of an unknown quantum state, from a sender to a receiver, is one of the main requirements to perform quantum information processing tasks. In this respect, the state transfer of a single qubit by means of spin chains has been widely discussed, and many protocols aiming at performing this task have been proposed. Nevertheless, the state transfer of more than one qubit has not been properly addressed so far. In this paper, we present a modified version of a recently proposed quantum state transfer protocol [Phys. Rev. A 87, 062309 (2013)] to obtain a quantum channel for the transfer of two qubits. This goal is achieved by exploiting Rabi-like oscillations due to excitations induced by means of strong and localized magnetic fields. We derive exact analytical formulae for the fidelity of the quantum state transfer, and obtain a high-quality transfer for general quantum states as well as for specific classes of states relevant for quantum information processing.