Do you want to publish a course? Click here

Test of non-Newtonian gravitational force at micrometer range

79   0   0.0 ( 0 )
 Added by ChengGang Shao
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an experimental test of non-Newtonian gravitational forces at mi- crometer range. To experimentally subtract off the Casimir force and the electrostatic force background, differential force measurements were performed by sensing the lateral force between a gold sphere and a density modulated source mass using a soft cantilever. The current sensitivity is limited by the patch electrostatic force, which is further improved by two dimensional (2D) force mapping. The preliminary result sets a model independent constraint on the Yukawa type force at this range.

rate research

Read More

There are theoretical frameworks, such as the large extra dimension models, which predict the strengthening of the gravitational field in short distances. Here we obtain new empiric constraints for deviations of standard gravity in the atomic length scale from analyses of recent and accurate data of hydrogen spectroscopy. The new bounds, extracted from 1S-3S transition, are compared with previous limits given by antiprotonic Helium spectroscopy. Independent constraints are also determined by investigating the effects of gravitational spin-orbit coupling on the atomic spectrum. We show that the analysis of the influence of that interaction, which is responsible for the spin precession phenomena, on the fine structure of the states can be employed as a test of a post-Newtonian potential in the atomic domain. The constraints obtained here from 2P_{1/2}-2P_{3/2} transition in hydrogen are tighter than previous bounds determined from measurements of the spin precession in an electron-nucleus scattering.
The MICROSCOPE experiment was designed to test the weak equivalence principle in space, by comparing the low-frequency dynamics of cylindrical free-falling test masses controlled by electrostatic forces. We use data taken during technical sessions aimed at estimating the electrostatic stiffness of MICROSCOPEs sensors to constrain a short-range Yukawa deviation from Newtonian gravity. We take advantage of the fact that in the limit of small displacements, the gravitational interaction (both Newtonian and Yukawa-like) between nested cylinders is linear, and thus simply characterised by a stiffness. By measuring the total stiffness of the forces acting on a test mass as it moves, and comparing it with the theoretical electrostatic stiffness (expected to dominate), it is a priori possible to infer constraints on the Yukawa potential parameters. However, we find that measurement uncertainties are dominated by the gold wires used to control the electric charge of the test masses, though their related stiffness is indeed smaller than the expected electrostatic stiffness. Moreover, we find a non-zero unaccounted for stiffness that depends on the instruments electric configuration, hinting at the presence of patch-field effects. Added to significant uncertainties on the electrostatic model, they only allow for poor constraints on the Yukawa potential. This is not surprising, as MICROSCOPE was not designed for this measurement, but this analysis is the first step to new experimental searches for non-Newtonian gravity in space.
The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.
We determine the gravitational interaction between two compact bodies up to the sixth power in Newtons constant GN, in the static limit. This result is achieved within the effective field theory approach to General Relativity, and exploits a manifest factorization property of static diagrams which allows to derive static post Newtonian (PN) contributions of (2n+1)-order in terms of lower order ones. We recompute in this fashion the 1PN and 3PN static potential, and present the novel 5PN contribution.
112 - K. Ninomiya , T. Akiyama , M. Hata 2017
The composition dependence of gravitational constant $G$ is measured at the millimeter scale to test the weak equivalence principle, which may be violated at short range through new Yukawa interactions such as the dilaton exchange force. A torsion balance on a turning table with two identical tungsten targets surrounded by two different attractor materials (copper and aluminum) is used to measure gravitational torque by means of digital measurements of a position sensor. Values of the ratios $tilde{G}_{Al-W}/tilde{G}_{Cu-W} -1$ and $tilde{G}_{Cu-W}/G_{N} -1$ were $(0.9 pm 1.1_{mathrm{sta}} pm 4.8_{mathrm{sys}}) times 10^{-2}$ and $ (0.2 pm 0.9_{mathrm{sta}} pm 2.1_{mathrm{sys}}) times 10^{-2}$ , respectively; these were obtained at a center to center separation of 1.7 cm and surface to surface separation of 4.5 mm between target and attractor, which is consistent with the universality of $G$. A weak equivalence principle (WEP) violation parameter of $eta_{Al-Cu}(rsim 1: mathrm{cm})=(0.9 pm 1.1_{mathrm{sta}} pm 4.9_{mathrm{sys}}) times 10^{-2} $ at the shortest range of around 1 cm was also obtained.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا