No Arabic abstract
In this paper, we introduce two new matrix stochastic processes: fractional Wishart processes and $varepsilon$-fractional Wishart processes with integer indices which are based on the fractional Brownian motions and then extend $varepsilon$-fractional Wishart processes to the case with non-integer indices. Both of two kinds of processes include classic Wishart processes when the Hurst index $H$ equals $frac{1}{2}$ and present serial correlation of stochastic processes. Applying $varepsilon$-fractional Wishart processes to financial volatility theory, the financial models account for the stochastic volatilities of the assets and for the stochastic correlations not only between the underlying assets returns but also between their volatilities and for stochastic serial correlation of the relevant assets.
Let $X^{(delta)}$ be a Wishart process of dimension $delta$, with values in the set of positive matrices of size $m$. We are interested in the large deviations for a family of matrix-valued processes ${delta^{-1} X_t^{(delta)}, t leq 1 }$ as $delta$ tends to infinity. The process $X^{(delta)}$ is a solution of a stochastic differential equation with a degenerate diffusion coefficient. Our approach is based upon the introduction of exponential martingales. We give some applications to large deviations for functionals of the Wishart processes, for example the set of eigenvalues.
This article is concerned with the joint law of an integrated Wishart bridge process and the trace of an integrated inverse Wishart bridge process over the interval $ left[0,tright] $. Its Laplace transform is obtained by studying the Wishart bridge processes and the absolute continuity property of Wishart laws.
The Ornstein-Uhlenbeck process can be seen as a paradigm of a finite-variance and statistically stationary rough random walk. Furthermore, it is defined as the unique solution of a Markovian stochastic dynamics and shares the same local regularity as the one of the Brownian motion. Based on previous works, we propose to include in the framework of one of its generalization, the so-called fractional Ornstein-Uhlenbeck process, some Multifractal corrections, using a Gaussian Multiplicative Chaos. The aforementioned process, called a Multifractal fractional Ornstein-Uhlenbeck process, is a statistically stationary finite-variance process. Its underlying dynamics is non-Markovian, although non-anticipating and causal. The numerical scheme and theoretical approach are based on a regularization procedure, that gives a meaning to this dynamical evolution, which unique solution converges towards a well-behaved stochastic process.
We consider eigenvalues of generalized Wishart processes as well as particle systems, of which the empirical measures converge to deterministic measures as the dimension goes to infinity. In this paper, we obtain central limit theorems to characterize the fluctuations of the empirical measures around the limit measures by using stochastic calculus. As applications, central limit theorems for the Dysons Brownian motion and the eigenvalues of the Wishart process are recovered under slightly more general initial conditions, and a central limit theorem for the eigenvalues of a symmetric Ornstein-Uhlenbeck matrix process is obtained.
Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected with measurement errors on discretized grids. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo. Compared to the standard Bayesian inference that suffers serious computational burden and unstableness for analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results as the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids where the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes.