Do you want to publish a course? Click here

High-dimensional central limit theorems for eigenvalue distributions of generalized Wishart processes

105   0   0.0 ( 0 )
 Added by Wangjun Yuan
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We consider eigenvalues of generalized Wishart processes as well as particle systems, of which the empirical measures converge to deterministic measures as the dimension goes to infinity. In this paper, we obtain central limit theorems to characterize the fluctuations of the empirical measures around the limit measures by using stochastic calculus. As applications, central limit theorems for the Dysons Brownian motion and the eigenvalues of the Wishart process are recovered under slightly more general initial conditions, and a central limit theorem for the eigenvalues of a symmetric Ornstein-Uhlenbeck matrix process is obtained.



rate research

Read More

In this article, we obtain an equation for the high-dimensional limit measure of eigenvalues of generalized Wishart processes, and the results is extended to random particle systems that generalize SDEs of eigenvalues. We also introduce a new set of conditions on the coefficient matrices for the existence and uniqueness of a strong solution for the SDEs of eigenvalues. The equation of the limit measure is further discussed assuming self-similarity on the eigenvalues.
127 - Xiao Fang , Yuta Koike 2020
We obtain explicit error bounds for the $d$-dimensional normal approximation on hyperrectangles for a random vector that has a Stein kernel, or admits an exchangeable pair coupling, or is a non-linear statistic of independent random variables or a sum of $n$ locally dependent random vectors. We assume the approximating normal distribution has a non-singular covariance matrix. The error bounds vanish even when the dimension $d$ is much larger than the sample size $n$. We prove our main results using the approach of Gotze (1991) in Steins method, together with modifications of an estimate of Anderson, Hall and Titterington (1998) and a smoothing inequality of Bhattacharya and Rao (1976). For sums of $n$ independent and identically distributed isotropic random vectors having a log-concave density, we obtain an error bound that is optimal up to a $log n$ factor. We also discuss an application to multiple Wiener-It^{o} integrals.
In this paper, we study the asymptotic behavior of a supercritical $(xi,psi)$-superprocess $(X_t)_{tgeq 0}$ whose underlying spatial motion $xi$ is an Ornstein-Uhlenbeck process on $mathbb R^d$ with generator $L = frac{1}{2}sigma^2Delta - b x cdot abla$ where $sigma, b >0$; and whose branching mechanism $psi$ satisfies Greys condition and some perturbation condition which guarantees that, when $zto 0$, $psi(z)=-alpha z + eta z^{1+beta} (1+o(1))$ with $alpha > 0$, $eta>0$ and $betain (0, 1)$. Some law of large numbers and $(1+beta)$-stable central limit theorems are established for $(X_t(f) )_{tgeq 0}$, where the function $f$ is assumed to be of polynomial growth. A phase transition arises for the central limit theorems in the sense that the forms of the central limit theorem are different in three different regimes corresponding the branching rate being relatively small, large or critical at a balanced value.
This paper is a continuation of our recent paper (Elect. J. Probab. 24 (2019), no. 141) and is devoted to the asymptotic behavior of a class of supercritical super Ornstein-Uhlenbeck processes $(X_t)_{tgeq 0}$ with branching mechanisms of infinite second moment. In the aforementioned paper, we proved stable central limit theorems for $X_t(f) $ for some functions $f$ of polynomial growth in three different regimes. However, we were not able to prove central limit theorems for $X_t(f) $ for all functions $f$ of polynomial growth. In this note, we show that the limit stable random variables in the three different regimes are independent, and as a consequence, we get stable central limit theorems for $X_t(f) $ for all functions $f$ of polynomial growth.
In this article, we study high-dimensional behavior of empirical spectral distributions ${L_N(t), tin[0,T]}$ for a class of $Ntimes N$ symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter $H in(1/2,1)$. For Wigner-type matrices, we obtain almost sure relative compactness of ${L_N(t), tin[0,T]}_{Ninmathbb N}$ in $C([0,T], mathbf P(mathbb R))$ following the approach in cite{Anderson2010}; for Wishart-type matrices, we obtain tightness of ${L_N(t), tin[0,T]}_{Ninmathbb N}$ on $C([0,T], mathbf P(mathbb R))$ by tightness criterions provided in Appendix ref{subset:tightness argument}. The limit of ${L_N(t), tin[0,T]}$ as $Nto infty$ is also characterised.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا