No Arabic abstract
Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond quoted error for the same elements within the same stars (Hinkel et al. 2014). The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We have invited a number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and USA) to calculate ten element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD361, HD10700, HD121504, HD202206). Each group produced measurements for each of the stars using: 1) their own autonomous techniques, 2) standardized stellar parameters, 3) standardized line list, and 4) both standardized parameters and line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.
We present the first measurements of [Fe/H] and [$alpha$/Fe] abundances, obtained using spectral synthesis modeling, for red giant branch stars in M31s giant stellar stream. The spectroscopic observations, obtained at a projected distance of 17 kpc from M31s center, yielded 61 stars with [Fe/H] measurements, including 21 stars with [$alpha$/Fe] measurements, from 112 targets identified as M31 stars. The [Fe/H] measurements confirm the expectation from photometric metallicity estimates that stars in this region of M31s halo are relatively metal-rich compared to stars in the MWs inner halo: more than half the stars in the field, including those not associated with kinematically identified substructure, have [Fe/H] abundances $> -1.0$. The stars in this field are $alpha$-enhanced at lower metallicities, while [$alpha$/Fe] decreases with increasing [Fe/H] above metallicities of [Fe/H] $gtrsim -0.9$. Three kinematical components have been previously identified in this field: the giant stellar stream, a second kinematically cold feature of unknown origin, and M31s kinematically hot halo. We compare probabilistic [Fe/H] and [$alpha$/Fe] distribution functions for each of the components. The giant stellar stream and the second kinematically cold feature have very similar abundance distributions, while the halo component is more metal-poor. Although the current sample sizes are small, a comparison of the abundances of stars in the giant stellar stream field with abundances of M31 halo and dSph stars from the literature indicate that the progenitor of the stream was likely more massive, and experienced a higher efficiency of star formation, than M31s existing dSphs or the dEs NGC147 and NGC185.
The chemical composition of galaxies has been measured out to z~4. However, nearly all studies beyond z~0.7 are based on strong-line emission from HII regions within star-forming galaxies. Measuring the chemical composition of distant quiescent galaxies is extremely challenging, as the required stellar absorption features are faint and shifted to near-infrared wavelengths. Here, we present ultra-deep rest-frame optical spectra of five massive quiescent galaxies at z~1.4, all of which show numerous stellar absorption lines. We derive the abundance ratios [Mg/Fe] and [Fe/H] for three out of five galaxies; the remaining two galaxies have too young luminosity-weighted ages to yield robust measurements. Similar to lower-redshift findings, [Mg/Fe] appears positively correlated with stellar mass, while [Fe/H] is approximately constant with mass. These results may imply that the stellar mass-metallicity relation was already in place at z~1.4. While the [Mg/Fe]-mass relation at z~1.4 is consistent with the z<0.7 relation, [Fe/H] at z~1.4 is ~0.2 dex lower than at z<0.7. With a [Mg/Fe] of 0.44(+0.08,-0.07) the most massive galaxy may be more alpha-enhanced than similar-mass galaxies at lower redshift, but the offset is less significant than the [Mg/Fe] of 0.6 previously found for a massive galaxy at z=2.1. Nonetheless, these results combined may suggest that [Mg/Fe] in the most massive galaxies decreases over time, possibly by accreting low-mass, less alpha-enhanced galaxies. A larger galaxy sample is needed to confirm this scenario. Finally, the abundance ratios indicate short star-formation timescales of 0.2-1.0 Gyr.
Space-based projects are providing a wealth of high-quality asteroseismic data, including frequencies for a large number of stars showing solar-like oscillations. These data open the prospect for precise determinations of key stellar parameters, of particular value to the study of extra-solar planetary systems. Given the quantity of the available and expected data it is important to develop efficient and reliable techniques for analyzing them, including the determination of stellar parameters from the observed frequencies. Here we present the SEEK package developed for the analysis of asteroseismic data from the Kepler mission. A central goal of the package is to obtain a fast and automatic determination of the stellar radius and other parameters, in a form that is statistically well-defined. The algorithms are tested by comparing the results of the analysis with independent measurements of stellar radius and mass, for a sample of well-observed stars. We conclude that the SEEK package fixes stellar parameters with accuracy and precision.
Differences in chemical composition among main sequence stars within a given cluster are probably due to differences in their masses and other effects such as radiative diffusion, magnetic field, rotation, mixing mechanisms, mass loss, accretion and multiplicity. The early type main-sequence members of open clusters of different ages allow to study the competition between radiative diffusion and mixing mechanisms. We have analysed low and high resolution spectra covering the spectral range 4500 - 5840 Angs. of late B, A, and F type members of the open Cluster M6 (age about 100 Myr). The spectra were obtained using the FLAMES/GIRAFFE spectrograph mounted at UT2, the 8 meter class VLT telescope. The effective temperatures, surface gravities and microturbulent velocities of the stars were derived using both photometric and spectral methods. We have also performed a chemical abundance analysis using synthetic spectra. The abundances of the elements were determined for C, O, Mg, Si, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Y, Ba. The star-to-star variations in elemental abundances among the members of the open cluster M6 were discussed.