No Arabic abstract
We analyze the possibility that the HESS gamma-ray source at the Galactic Center could be explained as the secondary flux produced by annihilation of TeV Dark Matter (TeVDM) particles with locally enhanced density, in a region spatially compatible with the HESS observations themselves. We study the inner 100 pc considering (i) the extrapolation of several density profiles from state-of-the-art N-body + Hydrodynamics simulations of Milky Way-like galaxies, (ii) the DM spike induced by the black hole, and (iii) the DM particles scattering off by bulge stars. We show that in some cases the DM spike may provide the enhancement in the flux required to explain the cut-off in the HESS J1745-290 gamma-ray spectra as TeVDM. In other cases, it may helps to describe the spatial tail reported by HESS II at angular scales < 0.54 degrees towards Sgr A.
The annihilation of dark matter particles in the halo of galaxies may end up into gamma rays, which travel almost unperturbed till to their detection at Earth. This annihilation signal can exhibit an anisotropic behavior quantified by the angular power spectrum, whose properties strongly depend on the dark matter distribution and its clumpiness. We use high resolution pure dark matter N-body simulations to quantify the contribution of different components (main halo and satellites) to the global signal as a function of the analytical profile adopted to describe the numerical results. We find that the smooth main halo dominates the angular power spectrum of the gamma-ray signal up to quite large multipoles, where the sub-haloes anisotropy signal starts to emerge, but the transition multipole strongly depends on the assumed radial profile. The extrapolation down to radii not resolved by current numerical simulations can affect both the normalization and the shape of the gamma-ray angular power spectrum. For the sub-haloes described by an asymptotically cored dark matter distribution, the angular power spectrum shows an overall smaller normalization and a flattening at high multipoles. Our results show the criticality of the dark matter density profile shape in gamma-ray anisotropy searches, and evaluate quantitatively the intrinsic errors occurring when extrapolating the dark matter radial profiles down to spatial scales not yet explored by numerical simulations.
Our paper reviews the planned space-based gamma-ray telescope GAMMA-400 and evaluates in details its opportunities in the field of dark matter (DM) indirect searches. We estimated GAMMA-400 mean sensitivity to the diphoton DM annihilation cross section in the Galactic center for DM particle masses in the range of 1-500 GeV. We obtained the sensitivity gain at least by 1.2-1.5 times (depending on DM particle mass) with respect to the expected constraints from 12 years of observations by Fermi-LAT for the case of Einasto DM density profile. The joint analysis of the data from both telescopes may yield the gain up to 1.8-2.3 times. Thus the sensitivity reaches the level of annihilation cross section $langle sigma v rangle_{gammagamma}(m_chi=100~mbox{GeV})approx 10^{-28}$ cm$^3$/s. This will allow us to test the hypothesized narrow lines predicted by specific DM models, particularly the recently proposed pseudo-Goldstone boson DM model. We also considered the decaying DM - in this case the joint analysis may yield the sensitivity gain up to 1.1-2.0 times reaching the level of DM lifetime $tau_{gamma u}(m_chi=100~mbox{GeV}) approx 2cdot 10^{29}$ s. We estimated the GAMMA-400 sensitivity to axion-like particle (ALP) parameters by a potential observation of the supernova explosion in the Local Group. This is very sensitive probe of ALPs reaching the level of ALP-photon coupling constant $g_{agamma} sim 10^{-13}~mbox{GeV}^{-1}$ for ALP masses $m_a lesssim 1$ neV. We also calculated the sensitivity to ALPs by constraining the modulations in the spectra of the Galactic gamma-ray pulsars due to possible ALP-photon conversion. GAMMA-400 is expected to be more sensitive than the CAST helioscope for ALP masses $m_a approx (1-10)$ neV reaching $g_{agamma}^{min} approx 2cdot 10^{-11}~mbox{GeV}^{-1}$. Other potentially interesting targets and candidates are briefly considered too.
With the increasing numbers of large stellar survey projects, the quality and quantity of excellent tracers to study the Milky Way is rapidly growing, one of which is the classical Cepheids. Classical Cepheids are high precision standard candles with very low typical uncertainties ($<$ 3%) available via the mid-infrared period-luminosity relation. About 3500 classical Cepheids identified from OGLE, ASAS-SN, Gaia, WISE and ZTF survey data have been analyzed in this work, and their spatial distributions show a clear signature of Galactic warp. Two kinematical methods are adopted to measure the Galactic rotation curve in the Galactocentric distance range of $4lesssim R_{rm GC} lesssim 19$ kpc. Gently declining rotation curves are derived by both the proper motion (PM) method and 3-dimensional velocity vector (3DV) method. The largest sample of classical Cepheids with most accurate 6D phase-space coordinates available to date are modeled in the 3DV method, and the resulting rotation curve is found to decline at the relatively smaller gradient of ($-1.33pm0.1$) ${rm km,s^{-1},kpc^{-1}}$. Comparing to results from the PM method, a higher rotation velocity (($232.5pm0.83$) ${rm km,s^{-1}}$) is derived at the position of Sun in the 3DV method. The virial mass and local dark matter density are estimated from the 3DV method which is the more reliable method, $M_{rm vir} = (0.822pm0.052)times 10^{12},M_odot$ and $rho_{rm DM,odot} = 0.33pm0.03$ GeV ${rm cm^{-3}}$, respectively.
The unambiguous detection of Galactic dark matter annihilation would unravel one of the most outstanding puzzles in particle physics and cosmology. Recent observations have motivated models in which the annihilation rate is boosted by the Sommerfeld effect, a non-perturbative enhancement arising from a long range attractive force. Here we apply the Sommerfeld correction to Via Lactea II, a high resolution N-body simulation of a Milky-Way-size galaxy, to investigate the phase-space structure of the Galactic halo. We show that the annihilation luminosity from kinematically cold substructure can be enhanced by orders of magnitude relative to previous calculations, leading to the prediction of gamma-ray fluxes from up to hundreds of dark clumps that should be detectable by the Fermi satellite.
If dark matter is composed of weakly interacting particles with mass in the GeV-TeV range, their annihilation or decay may produce gamma rays that could be detected by gamma-ray telescopes. Observations of dwarf spheroidal satellite galaxies of the Milky Way (dSphs) benefit from the relatively accurate predictions of dSph dark matter content to produce robust constraints to the dark matter properties. The sensitivity of these observations for the search for dark matter signals can be optimized thanks to the use of advanced statistical techniques able to exploit the spectral and morphological peculiarities of the expected signal. In this paper, I review the status of the dark matter searches from observations of dSphs with the current generation of gamma-ray telescopes: Fermi-LAT, H.E.S.S, MAGIC, VERITAS and HAWC. I will describe in detail the general statistical analysis framework used by these instruments, putting in context the most recent experimental results and pointing out the most relevant differences among the different particular implementations. This~will facilitate the comparison of the current and future results, as well as their eventual integration in a multi-instrument and multi-target dark matter search.