No Arabic abstract
The annihilation of dark matter particles in the halo of galaxies may end up into gamma rays, which travel almost unperturbed till to their detection at Earth. This annihilation signal can exhibit an anisotropic behavior quantified by the angular power spectrum, whose properties strongly depend on the dark matter distribution and its clumpiness. We use high resolution pure dark matter N-body simulations to quantify the contribution of different components (main halo and satellites) to the global signal as a function of the analytical profile adopted to describe the numerical results. We find that the smooth main halo dominates the angular power spectrum of the gamma-ray signal up to quite large multipoles, where the sub-haloes anisotropy signal starts to emerge, but the transition multipole strongly depends on the assumed radial profile. The extrapolation down to radii not resolved by current numerical simulations can affect both the normalization and the shape of the gamma-ray angular power spectrum. For the sub-haloes described by an asymptotically cored dark matter distribution, the angular power spectrum shows an overall smaller normalization and a flattening at high multipoles. Our results show the criticality of the dark matter density profile shape in gamma-ray anisotropy searches, and evaluate quantitatively the intrinsic errors occurring when extrapolating the dark matter radial profiles down to spatial scales not yet explored by numerical simulations.
We analyze the possibility that the HESS gamma-ray source at the Galactic Center could be explained as the secondary flux produced by annihilation of TeV Dark Matter (TeVDM) particles with locally enhanced density, in a region spatially compatible with the HESS observations themselves. We study the inner 100 pc considering (i) the extrapolation of several density profiles from state-of-the-art N-body + Hydrodynamics simulations of Milky Way-like galaxies, (ii) the DM spike induced by the black hole, and (iii) the DM particles scattering off by bulge stars. We show that in some cases the DM spike may provide the enhancement in the flux required to explain the cut-off in the HESS J1745-290 gamma-ray spectra as TeVDM. In other cases, it may helps to describe the spatial tail reported by HESS II at angular scales < 0.54 degrees towards Sgr A.
A small fraction of thermalized dark radiation that transitions into cold dark matter (CDM) between big bang nucleosynthesis and matter-radiation equality can account for the entire dark matter relic density. Because of its transition from dark radiation, late-forming dark matter (LFDM) suppresses the growth of linear matter perturbations and imprints the oscillatory signatures of dark radiation perturbations on small scales. The cutoff scale in the linear matter power spectrum is set by the redshift $z_T$ of the phase transition; tracers of small-scale structure can therefore be used to infer the LFDM formation epoch. Here, we use a forward model of the Milky Way (MW) satellite galaxy population to address the question: How late can dark matter form? For dark radiation with strong self-interactions, which arises in theories of neutrinolike LFDM, we report $z_{T}>5.5times 10^6$ at $95%$ confidence based on the abundance of known MW satellite galaxies. This limit rigorously accounts for observational incompleteness corrections, marginalizes over uncertainties in the connection between dwarf galaxies and dark matter halos, and improves upon galaxy clustering and Lyman-$alpha$ forest constraints by nearly an order of magnitude. We show that this limit can also be interpreted as a lower bound on $z_T$ for LFDM that free-streams prior to its phase transition, although dedicated simulations will be needed to analyze this case in detail. Thus, dark matter created by a transition from dark radiation must form no later than one week after the big bang.
We perform a comprehensive study of Milky Way (MW) satellite galaxies to constrain the fundamental properties of dark matter (DM). This analysis fully incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and marginalizes over uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk. Our results are consistent with the cold, collisionless DM paradigm and yield the strongest cosmological constraints to date on particle models of warm, interacting, and fuzzy dark matter. At $95%$ confidence, we report limits on (i) the mass of thermal relic warm DM, $m_{rm WDM} > 6.5 mathrm{keV}$ (free-streaming length, $lambda_{rm{fs}} lesssim 10,h^{-1} mathrm{kpc}$), (ii) the velocity-independent DM-proton scattering cross section, $sigma_{0} < 8.8times 10^{-29} mathrm{cm}^{2}$ for a $100 mathrm{MeV}$ DM particle mass (DM-proton coupling, $c_p lesssim (0.3 mathrm{GeV})^{-2}$), and (iii) the mass of fuzzy DM, $m_{phi}> 2.9 times 10^{-21} mathrm{eV}$ (de Broglie wavelength, $lambda_{rm{dB}} lesssim 0.5 mathrm{kpc}$). These constraints are complementary to other observational and laboratory constraints on DM properties.
The spatial distribution of Milky Way (MW) subhaloes provides an important set of observables for testing cosmological models. These include the radial distribution of luminous satellites, planar configurations, and the abundance of dark subhaloes whose existence or absence is key to distinguishing amongst dark matter models. We use the COCO $N$-body simulations of cold dark matter (CDM) and 3.3keV thermal relic warm dark matter (WDM) to predict the satellite spatial distribution. We demonstrate that the radial distributions of CDM and 3.3keV-WDM luminous satellites are identical if the minimum pre-infall halo mass to form a galaxy is $>10^{8.5}$$mathrm{M}_{odot}$ The distribution of dark subhaloes is significantly more concentrated in WDM due to the absence of low mass, recently accreted substructures that typically inhabit the outer parts of a MW halo in CDM. We show that subhaloes of mass $[10^{7},10^{8}]$$mathrm{M}_{odot}$ and within 30kpc of the centre are the stripped remnants of larger haloes in both models. Therefore their abundance in WDM is $3times$ higher than one would anticipate from the overall WDM subhalo population. We estimate that differences between CDM and WDM concentration--mass relations can be probed for subhalo--stream impact parameters $<2$kpc. Finally, we find that the impact of WDM on planes of satellites is likely negligible. Precise predictions will require further work with high resolution, self-consistent hydrodynamical simulations.
The complex interplay of processes at the Galactic Center is at the heart of numerous past, present, and (likely) future mysteries. We aim at a more complete understanding of how spectra extending to >10 TeV result. We first construct a simplified model to account for the peculiar energy and angular dependence of the intense central parsec photon field. This allows for calculating anisotropic inverse Compton scattering and mapping gamma-ray extinction due to gamma gamma -> e^+ e^- attenuation. Coupling these with a method for evolving electron spectra, we examine several clear and present excesses, including the diffuse hard X-rays seen by NuSTAR and GeV gamma rays by Fermi. We address further applications to cosmic rays, dark matter, neutrinos, and gamma rays from the Center and beyond.