No Arabic abstract
We report the results of an experiment conducted near the High Flux Isotope Reactor of Oak Ridge National Laboratory, designed to address the question of whether a flux of reactor-generated electron antineutrinos can alter the rates of weak nuclear interaction-induced decays for Mn-54, Na-22, and Co-60. This experiment, while quite sensitive, cannot exclude perturbations less than one or two parts in $10^4$ in $beta$ decay (or electron capture) processes, in the presence of an antineutrino flux of $3times 10^{12}$ cm$^{-2}$ s$^{-1}$. The present experimental methods are applicable to a wide range of isotopes. Improved sensitivity in future experiments may be possible if we can understand and reduce the dominant systematic uncertainties.
In the search for an electron antineutrino detection method with sensitivity below the 1.8 MeV threshold for the inverse beta decay reaction, beta decay counting experiments with ca. 3 kBq 22Na and 60Co sources were conducted at unit #1 (2.775 GW_th) of the Koeberg Nuclear Power Station in South Africa. The setup consisted of one NaI crystal to measure de-excitation and annihilation photons associated with beta decay. Its volume and well shape were chosen to use coincidence summing in order to differentiate between electron capture and beta+ emission in 22Na. The setup was shielded from the reactor core by 8 m of uninterrupted concrete. Background radiation, responsible for ca. 1% of the total countrate with either source, increased by merely 3% when the reactor status changed from OFF to ON. Normalized countrates of three energy regions-of-interest (TOT, MED, HI) were parameterized to jointly describe the time dependence of two instrumental effects and a reactor-status step function in a least-squares regression analysis. With the 22Na source, the fractional countrate changes in the step from reactor OFF to ON were: (delA/A)_TOT = [-3.02 +- 0.14(stat) +- 0.07(syst)] x 10^-4, (delA/A)_MED = [+1.44 +- 0.42(stat) +- 0.07(syst)] x 10^-4, and (delA/A)_HI = [-2.70 +- 0.26(stat) +- 0.04(syst)] x 10^-4. The uncertainty budget is incomplete because it does not contain the possible influence from environmental factors and the finite stability of the MCA clock-oscillator. No reactor-status dependence was observed with the 60Co source. The corresponding cross sections are [1.55 +- 0.07(stat)] x 10^-25 cm^2 for EC + beta+ decay in 22Na and [0.5 +- 1.5(stat)] x 10^-26 cm^2 for beta- decay of 60Co. The negative sign for TOT and HI activity changes in 22Na points to an antineutrino related interference effect on the beta+ decay of 22Na and rules out reactor neutron induced reactions.
A search for Pauli-exclusion-principle-violating K-alpha electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8x10^30 seconds at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the x-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8x10^30 seconds at 90 C.L. It is estimated that the MAJORANA DEMONSTRATOR, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of 76-Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.
This presentation describes a measurement of the neutrino mixing parameter, sin^2(2theta_13), from the Daya Bay Reactor Neutrino Experiment. Disappearance of electron antineutrinos at a distance of ~2 km from a set of six reactors, where the reactor flux is constrained by near detectors, has been clearly observed. The result, based on the ratio of observed to expected rate of antineutrinos, using 139 days of data taken between December 24, 2011 and May 11, 2012, is sin^2(2theta_13) = 0.089 +/- 0.010(stat.) +/- 0.005(syst.). Improvements in sensitivity from inclusion of additional data, spectral analysis, and improved calibration are expected in the future.
The article describes the main achievements of the NUMEN project together with an updated and detailed overview of the related R&D activities and theoretical developments. NUMEN proposes an innovative technique to access the nuclear matrix elements entering the expression of the lifetime of the double beta decay by cross section measurements of heavy-ion induced Double Charge Exchange (DCE) reactions. Despite the two processes, namely neutrinoless double beta decay and DCE reactions, are triggered by the weak and strong interaction respectively, important analogies are suggested. The basic point is the coincidence of the initial and final state many-body wave-functions in the two types of processes and the formal similarity of the transition operators. First experimental results obtained at the INFN-LNS laboratory for the 40Ca(18O,18Ne)40Ar reaction at 270 MeV, give encouraging indication on the capability of the proposed technique to access relevant quantitative information. The two major aspects for this project are the K800 Superconducting Cyclotron and MAGNEX spectrometer. The former is used for the acceleration of the required high resolution and low emittance heavy ion beams and the latter is the large acceptance magnetic spectrometer for the detection of the ejectiles. The use of the high-order trajectory reconstruction technique, implemented in MAGNEX, allows to reach the experimental resolution and sensitivity required for the accurate measurement of the DCE cross sections at forward angles. However, the tiny values of such cross sections and the resolution requirements demand beam intensities much larger than manageable with the present facility. The on-going upgrade of the INFN-LNS facilities in this perspective is part of the NUMEN project and will be discussed in the article.
Neutrinoless double-beta decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the Majorana Demonstrator, a 40-kg modular germanium detector array, to search for the Neutrinoless double-beta decay of 76Ge and to demonstrate a background rate at or below 3 counts/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for 76Ge Neutrinoless double-beta decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the Majorana Demonstrator, including its design and approach to achieve ultra-low backgrounds and the status of the experiment.