No Arabic abstract
A search for Pauli-exclusion-principle-violating K-alpha electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8x10^30 seconds at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the x-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8x10^30 seconds at 90 C.L. It is estimated that the MAJORANA DEMONSTRATOR, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of 76-Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.
The CDEX-1 experiment conducted a search of low-mass (< 10 GeV/c2) Weakly Interacting Massive Particles (WIMPs) dark matter at the China Jinping Underground Laboratory using a p-type point-contact germanium detector with a fiducial mass of 915 g at a physics analysis threshold of 475 eVee. We report the hardware set-up, detector characterization, data acquisition and analysis procedures of this experiment. No excess of unidentified events are observed after subtraction of known background. Using 335.6 kg-days of data, exclusion constraints on the WIMP-nucleon spin-independent and spin-dependent couplings are derived.
We present new limits on exotic keV-scale physics based on 478 kg d of MAJORANA DEMONSTRATOR commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal-limits above our background. Our most stringent DM constraints are set for 11.8 keV mass particles, limiting $g_{Ae} <4.5times 10^{-13}$ for pseudoscalars and $frac{alpha}{alpha} < 9.7times 10^{-28}$ for vectors. We also report a 14.4 keV solar axion coupling limit of $g_{AN}^{mathrm{eff}}times g_{Ae}~<~3.8 times 10^{-17}$, a $frac{1}{2}beta^2~<~8.5times10^{-48}$ limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of $tau_e > 1.2 times 10^{24};$yr for $e^- rightarrow$ invisible.
The VIolation of Pauli exclusion principle -2 experiment, or VIP-2 experiment, at the Laboratori Nazionali del Gran Sasso searches for x-rays from copper atomic transition that are prohibited by the Pauli Exclusion Principle. Candidate direct violation events come from the transition of a $2p$ electron to the ground state that is already occupied by two electrons. From the first data taking campaign in 2016 of VIP-2 experiment, we determined a best upper limit of 3.4 $times$ 10$^{-29}$ for the probability that such a violation exists. Significant improvement in the control of the experimental systematics was also achieved, although not explicitly reflected in the improved upper limit. By introducing a simultaneous spectral fit of the signal and background data in the analysis, we succeeded in taking into account systematic errors that could not be evaluated previously in this type of measurements.
We report results of a search for light Dark Matter WIMPs with CDEX-1 experiment at the China Jinping Underground Laboratory, based on 53.9 kg-days of data from a p-type point-contact germanium detector enclosed by a NaI(Tl) crystal scintillator as anti-Compton detector. The event rate and spectrum above the analysis threshold of 475 eVee are consistent with the understood background model. Part of the allowed regions for WIMP-nucleus coherent elastic scattering at WIMP mass of 6-20 GeV are probed and excluded. Independent of interaction channels, this result contradicts the interpretation that the anomalous excesses of the CoGeNT experiment are induced by Dark Matter, since identical detector techniques are used in both experiments.
We report on several features present in the energy spectrum from an ultra low-noise germanium detector operated at 2,100 m.w.e. By implementing a new technique able to reject surface events, a number of cosmogenic peaks can be observed for the first time. We discuss several possible causes for an irreducible excess of bulk-like events below 3 keVee, including a dark matter candidate common to the DAMA/LIBRA annual modulation effect, the hint of a signal in CDMS, and phenomenological predictions. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.