Do you want to publish a course? Click here

Free-space spectro-temporal and spatio-temporal conversion for pulsed light

114   0   0.0 ( 0 )
 Added by Eilon Poem
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an apparatus that converts every pulse of a pulsed light source to a pulse train in which the intensities of the different pulses are samples of the spatial or temporal frequency spectrum of the original pulse. In this way, the spectrum of the incident light can be measured by following the temporal response of a single detector. The apparatus is based on multiple round-trips inside a 2f- cavity-like mirror arrangement in which the spectrum is spread on the back focal plane, where after each round-trip a small section of the spectrum is allowed to escape. The apparatus is fibre-free, offers easy wavelength range tunability, and a prototype built achieves over 10% average efficiency in the near infra red. We demonstrate the application of the prototype for the efficient measurement of the joint spectrum of a non-degenerate bi-photon source in which one of the photons is in the near infra red.



rate research

Read More

Spectral dispersion of ultrashort pulses allows simultaneous focusing of light in both space and time creating so-called spatio-temporal foci. Such space-time coupling may be combined with existing holographic techniques to give a further dimension of control when generating focal light fields. It is shown that a phase-only hologram placed in the pupil plane of an objective and illuminated by a spatially chirped ultrashort pulse can be used to generate three dimensional arrays of spatio-temporally focused spots. Exploiting the pulse front tilt generated at focus when applying simultaneous spatial and temporal focusing (SSTF), it is possible to overlap neighbouring foci in time to create a smooth intensity distribution. The resulting light field displays a high level of axial confinement, with experimental demonstrations given through two-photon microscopy and non-linear laser fabrication of glass.
We demonstrate the ability to control and shape the spectro-temporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectro-temporal properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows retrieving the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility to tailor the spectro-temporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to X-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.
Light emitted from a source into a scene can undergo complex interactions with scene surfaces of different material types before being reflected. During this transport, every surface reflection is encoded in the properties of the photons that reach the detector, including time, direction, intensity, wavelength and polarization. Conventional imaging systems capture intensity by integrating over all other dimensions of the light, hiding this rich scene information. Existing methods are capable of untangling these measurements into their spatial and temporal dimensions, fueling geometric scene understanding tasks. However, examining material properties jointly with geometric properties is an open challenge that could enable unprecedented capabilities beyond geometric scene understanding, allowing for material-dependent scene understanding and imaging through complex transport. In this work, we close this gap, and propose a computational light transport imaging method that captures the spatially- and temporally-resolved complete polarimetric response of a scene. Our method hinges on a 7D tensor theory of light transport. We discover low-rank structure in the polarimetric tensor dimension and propose a data-driven rotating ellipsometry method that learns to exploit redundancy of polarimetric structure. We instantiate our theory with two prototypes: spatio-polarimetric imaging and coaxial temporal-polarimetric imaging. This allows us, for the first time, to decompose scene light transport into temporal, spatial, and complete polarimetric dimensions that unveil scene properties hidden to conventional methods. We validate the applicability of our method on diverse tasks, including shape reconstruction with subsurface scattering, seeing through scattering media, untangling multi-bounce light transport, breaking metamerism, and decomposition of crystals.
The shortest light pulses produced to date are of the order of a few tens of attoseconds, with central frequencies in the extreme ultraviolet range and bandwidths exceeding tens of eV. They are often produced as a train of pulses separated by half the driving laser period, leading in the frequency domain to a spectrum of high, odd-order harmonics. As light pulses become shorter and more spectrally wide, the widely-used approximation consisting in writing the optical waveform as a product of temporal and spatial amplitudes does not apply anymore. Here, we investigate the interplay of temporal and spatial properties of attosecond pulses. We show that the divergence and focus position of the generated harmonics often strongly depend on their frequency, leading to strong chromatic aberrations of the broadband attosecond pulses. Our argumentation uses a simple analytical model based on Gaussian optics, numerical propagation calculations and experimental harmonic divergence measurements. This effect needs to be considered for future applications requiring high quality focusing while retaining the broadband/ultrashort characteristics of the radiation.
347 - Wen Xiong , Chia Wei Hsu , Hui Cao 2018
Long-range speckle correlations play an essential role in wave transport through disordered media, but have rarely been studied in other complex systems. Here we discover spatio-temporal intensity correlations for an optical pulse propagating through a multimode fiber with strong random mode coupling. Positive long-range correlations arise from multiple scattering in fiber mode space and depend on the statistical distribution of arrival times. By optimizing the incident wavefront of a pulse, we maximize the power transmitted at a selected time, and such control is significantly enhanced by the long-range spatio-temporal correlations. We provide an explicit relation between the correlations and the enhancements, which closely agrees with experimental data. Our work shows that multimode fibers provide a fertile ground for studying complex wave phenomena, and the strong spatio-temporal correlations can be employed for efficient power delivery at a well-defined time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا