In Molnar et al. [Phys. Rev. D 93, 114025 (2016)] the equations of anisotropic dissipative fluid dynamics were obtained from the moments of the Boltzmann equation based on an expansion around an arbitrary anisotropic single-particle distribution function. In this paper we make a particular choice for this distribution function and consider the boost-invariant expansion of a fluid in one dimension. In order to close the conservation equations, we need to choose an additional moment of the Boltzmann equation. We discuss the influence of the choice of this moment on the time evolution of fluid-dynamical variables and identify the moment that provides the best match of anisotropic fluid dynamics to the solution of the Boltzmann equation in the relaxation-time approximation.
Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, $hat{f}_{0bf k}$, which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from $hat{f}_{0bf k}$. Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.
We study anisotropic fluid dynamics derived from the Boltzmann equation based on a particular choice for the anisotropic distribution function within a boost-invariant expansion of the fluid in one spatial dimension. In order to close the conservation equations we need to choose an additional moment of the Boltzmann equation. We discuss the influence of this choice of closure on the time evolution of fluid-dynamical variables and search for the best agreement to the solution of the Boltzmann equation in the relaxation-time approximation.
We derive the equations of motion of relativistic, non-resistive, second-order dissipative magnetohydrodynamics from the Boltzmann equation using the method of moments. We assume the fluid to be composed of a single type of point-like particles with vanishing dipole moment or spin, so that the fluid has vanishing magnetization and polarization. In a first approximation, we assume the fluid to be non-resistive, which allows to express the electric field in terms of the magnetic field. We derive equations of motion for the irreducible moments of the deviation of the single-particle distribution function from local thermodynamical equilibrium. We analyze the Navier-Stokes limit of these equations, reproducing previous results for the structure of the first-order transport coefficients. Finally, we truncate the system of equations for the irreducible moments using the 14-moment approximation, deriving the equations of motion of relativistic, non-resistive, second-order dissipative magnetohydrodynamics. We also give expressions for the new transport coefficients appearing due to the coupling of the magnetic field to the dissipative quantities.
In this work we present a general derivation of relativistic fluid dynamics from the Boltzmann equation using the method of moments. The main difference between our approach and the traditional 14-moment approximation is that we will not close the fluid-dynamical equations of motion by truncating the expansion of the distribution function. Instead, we keep all terms in the moment expansion. The reduction of the degrees of freedom is done by identifying the microscopic time scales of the Boltzmann equation and considering only the slowest ones. In addition, the equations of motion for the dissipative quantities are truncated according to a systematic power-counting scheme in Knudsen and inverse Reynolds number. We conclude that the equations of motion can be closed in terms of only 14 dynamical variables, as long as we only keep terms of second order in Knudsen and/or inverse Reynolds number. We show that, even though the equations of motion are closed in terms of these 14 fields, the transport coefficients carry information about all the moments of the distribution function. In this way, we can show that the particle-diffusion and shear-viscosity coefficients agree with the values given by the Chapman-Enskog expansion.
[Background] Experimental data from heavy-ion experiments at RHIC-BNL and LHC-CERN are quantitatively described using relativistic fluid dynamics. Even p+A and p+p collisions show signs of collective behavior describable in the same manner. Nevertheless, small system sizes and large gradients strain the limits of applicability of fluid-dynamical methods. [Purpose] The range of applicability of fluid dynamics for the description of the collective behavior, and in particular of the elliptic flow, of small systems needs to be explored. [Method] Results of relativistic fluid-dynamical simulations are compared with solutions of the Boltzmann equation in a longitudinally boost-invariant picture. As initial condition, several different transverse energy-density profiles for equilibrated matter are investigated. [Results] While there is overall a fair agreement of energy- and particle-density profiles, components of the shear-stress tensor are more sensitive to details of the implementation. The highest sensitivity is exhibited by quantities influenced by properties of the medium at freeze-out. [Conclusions] For some quantities, like the shear-stress tensor, agreement between fluid dynamics and transport theory extends into regions of Knudsen numbers and inverse Reynolds numbers where relativistic fluid dynamics is believed to fail.
Etele Molnar
,Harri Niemi
,Dirk H. Rischke
.
(2016)
.
"Closing the equations of motion of anisotropic fluid dynamics by a judicious choice of moment of the Boltzmann equation"
.
Etele Molnar
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا