No Arabic abstract
Large-scale antenna (LSA) or massive multiple-input multiple-output (MIMO) has gained a lot of attention due to its potential to significantly improve system throughput. As a natural evolution from traditional MIMO-orthogonal frequency division multiplexing (OFDM), LSA has been combined with OFDM to deal with frequency selectivity of wireless channels in most existing works. As an alternative approach, single-carrier (SC) has also been proposed for LSA systems due to its low implementation complexity. In this article, a comprehensive comparison between LSA-OFDM and LSA-SC is presented, which is of interest to the waveform design for the next generation wireless systems.
Large-scale antenna (LSA) has gained a lot of attention due to its great potential to significantly improve system throughput. In most existing works on LSA systems, orthogonal frequency division multiplexing (OFDM) is presumed to deal with frequency selectivity of wireless channels. Although LSA-OFDM is a natural evolution from multiple-input multiple-output OFDM (MIMO-OFDM), the drawbacks of LSA-OFDM are inevitable, especially when used for the uplink. In this paper, we investigate single-carrier (SC) modulation for the uplink transmission in LSA systems based on a novel waveform recovery theory, where the receiver is designed to recover the transmit waveform while the information-bearing symbols can be recovered by directly sampling the recovered waveform. The waveform recovery adopts the assumption that the antenna number is infinite and the channels at different antennas are independent. In practical environments, however, the antenna number is always finite and the channels at different antennas are also correlated when placing hundreds of antennas in a small area. Therefore, we will also analyze the impacts of such non-ideal environments.
Large-scale antenna (LSA) has gained a lot of attention recently since it can significantly improve the performance of wireless systems. Similar to multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) or MIMO-OFDM, LSA can be also combined with OFDM to deal with frequency selectivity in wireless channels. However, such combination suffers from substantially increased complexity proportional to the number of antennas in LSA systems. For the conventional implementation of LSA-OFDM, the number of inverse fast Fourier transforms (IFFTs) increases with the antenna number since each antenna requires an IFFT for OFDM modulation. Furthermore, zero-forcing (ZF) precoding is required in LSA systems to support more users, and the required matrix inversion leads to a huge computational burden. In this paper, we propose a low-complexity recursive convolutional precoding to address the issues above. The traditional ZF precoding can be implemented through the recursive convolutional precoding in the time domain so that only one IFFT is required for each user and the matrix inversion can be also avoided. Simulation results show that the proposed approach can achieve the same performance as that of ZF but with much lower complexity.
The combination of energy harvesting and large-scale multiple antenna technologies provides a promising solution for improving the energy efficiency (EE) by exploiting renewable energy sources and reducing the transmission power per user and per antenna. However, the introduction of energy harvesting capabilities into large-scale multiple antenna systems poses many new challenges for energy-efficient system design due to the intermittent characteristics of renewable energy sources and limited battery capacity. Furthermore, the total manufacture cost and the sum power of a large number of radio frequency (RF) chains can not be ignored, and it would be impractical to use all the antennas for transmission. In this paper, we propose an energy-efficient antenna selection and power allocation algorithm to maximize the EE subject to the constraint of users quality of service (QoS). An iterative offline optimization algorithm is proposed to solve the non-convex EE optimization problem by exploiting the properties of nonlinear fractional programming. The relationships among maximum EE, selected antenna number, battery capacity, and EE-SE tradeoff are analyzed and verified through computer simulations.
The Reconfigurable Intelligent Surface (RIS) constitutes one of the prominent technologies for the next 6-th Generation (6G) of wireless communications. It is envisioned to enhance signal coverage in cases where obstacles block the direct communication from Base Stations (BSs), and when high carrier frequencies are used that are sensitive to attenuation losses. In the literature, the exploitation of RISs is exclusively based on traditional coherent demodulation, which necessitates the availability of Channel State Information (CSI). Given the CSI, a multi-antenna BS or a dedicated controller computes the pre/post spatial coders and the RIS configuration. The latter tasks require significant amount of time and resources, which may not be affordable when the channel is time-varying or the CSI is not accurate enough. In this paper, we consider the uplink between a single-antenna user and a multi-antenna BS and present a novel RIS-empowered Orthogonal Frequency Division Multiplexing (OFDM) communication system based on the differential phase shift keying, which is suitable for high noise and/or mobility scenarios. Considering both an idealistic and a realistic channel model, analytical expressions for the Signal-to-Interference and Noise Ratio (SINR) and the Symbol Error Probability (SEP) of the proposed non-coherent RIS-empowered system are presented. Our extensive computer simulation results verify the accuracy of the presented analysis and showcase the proposed systems performance and superiority over coherent demodulation in different mobility and spatial correlation scenarios.
With the increasing number of wireless communication systems and the demand for bandwidth, the wireless medium has become a congested and contested environment. Operating under such an environment brings several challenges, especially for military communication systems, which need to guarantee reliable communication while avoiding interfering with other friendly or neutral systems and denying the enemy systems of service. In this work, we investigate a novel application of Rate-Splitting Multiple Access(RSMA) for joint communications and jamming with a Multi-Carrier(MC) waveform in a multiantenna Cognitive Radio(CR) system. RSMA is a robust multiple access scheme for downlink multi-antenna wireless networks. RSMA relies on multi-antenna Rate-Splitting (RS) at the transmitter and Successive Interference Cancellation (SIC) at the receivers. Our aim is to simultaneously communicate with Secondary Users(SUs) and jam Adversarial Users(AUs) to disrupt their communications while limiting the interference to Primary Users(PUs) in a setting where all users perform broadband communications by MC waveforms in their respective networks. We consider the practical setting of imperfect CSI at transmitter(CSIT) for the SUs and PUs, and statistical CSIT for AUs. We formulate a problem to obtain optimal precoders which maximize the mutual information under interference and jamming power constraints. We propose an Alternating Optimization-Alternating Direction Method of Multipliers(AOADMM) based algorithm for solving the resulting non-convex problem. We perform an analysis based on Karush-Kuhn-Tucker conditions to determine the optimal jamming and interference power thresholds that guarantee the feasibility of problem and propose a practical algorithm to calculate the interference power threshold. By simulations, we show that RSMA achieves a higher sum-rate than Space Division Multiple Access(SDMA).