Do you want to publish a course? Click here

Surfaces with $chi=5, K^{2}=9$ and a canonical involution

81   0   0.0 ( 0 )
 Added by Zhiming Lin
 Publication date 2016
  fields
and research's language is English
 Authors Zhiming Lin




Ask ChatGPT about the research

In this paper, we classify the minimal surfaces of general type with $chi=5$, $K^{2}=9$ whose canonical map is composed with an involution. We obtain 6 families, whose dimensions in the moduli space are 28, 27, 33, 32, 31 and 32 respectively. Among them, the family of surfaces having a genus 2 fibration forms an irreducible component of $mathfrak{M}_{chi=5, K^{2}=9}$.



rate research

Read More

166 - Christian Gleissner 2013
A complex surface $S$ is said to be isogenous to a product if $S$ is a quotient $S=(C_1 times C_2)/G$ where the $C_i$s are curves of genus at least two, and $G$ is a finite group acting freely on $C_1 times C_2$. In this paper we classify all regular surfaces isogenous to a product with $chi(mathcal O_S) = 2$ under the assumption that the action of $G$ is unmixed i.e. no element of $G$ exchange the factors of the product $C_1 times C_2$.
96 - Matteo A. Bonfanti 2015
Let $S$ be a surface isogenous to a product of curves of unmixed type. After presenting several results useful to study the cohomology of $S$ we prove a structure theorem for the cohomology of regular surfaces isogenous to a product of unmixed type with $chi (mathcal{O}_S)=2$. In particular we found two families of surfaces of general type with maximal Picard number.
283 - Jungkai A. Chen , Meng Chen 2008
We prove that the canonical volume $K^3geq {1/30}$ for all projective 3-folds of general type with $chi(mathcal{O})leq 0$. This bound is sharp.
176 - Fabrizio Catanese 2016
We consider a family of surfaces of general type $S$ with $K_S$ ample, having $K^2_S = 24, p_g (S) = 6, q(S)=0$. We prove that for these surfaces the canonical system is base point free and yields an embedding $Phi_1 : S rightarrow mathbb{P}^5$. This result answers a question posed by G. and M. Kapustka. We discuss some related open problems, concerning also the case $p_g(S) = 5$, where one requires the canonical map to be birational onto its image.
137 - Fabrizio Catanese 2017
We give new contributions to the existence problem of canonical surfaces of high degree. We construct several families (indeed, connected components of the moduli space) of surfaces $S$ of general type with $p_g=5,6$ whose canonical map has image $Sigma$ of very high degree, $d=48$ for $p_g=5$, $d=56$ for $p_g=6$. And a connected component of the moduli space consisting of surfaces $S$ with $K^2_S = 40, p_g=4, q=0$ whose canonical map has always degree $geq 2$, and, for the general surface, of degree $2$ onto a canonical surface $Y$ with $K^2_Y = 12, p_g=4, q=0$. The surfaces we consider are SIP s, i.e. surfaces $S$ isogenous to a product of curves $(C_1 times C_2 )/ G$; in our examples the group $G$ is elementary abelian, $G = (mathbb{Z}/m)^k$. We also establish some basic results concerning the canonical maps of any surface isogenous to a product, basing on elementary representation theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا