It was proved by J. A. Chen and M. Chen that a terminal Fano $3$-fold $X$ satisfies $(-K_X)^3geq frac{1}{330}$. We show that a non-rational $mathbb{Q}$-factorial terminal Fano $3$-fold $X$ with $rho(X)=1$ and $(-K_X)^3=frac{1}{330}$ is a weighted hypersurface of degree $66$ in $mathbb{P}(1,5,6,22,33)$.
Let $X$ be a complex nonsingular projective 3-fold of general type. We show that there are positive constants $c$, $c$ and $m_1$ such that $chi (omega _X)geq -cVol (X)$ and $P_m(X)geq cm^3Vol (X)$ for all $mgeq m_1$.
Let $V$ be a complex nonsingular projective 3-fold of general type. We prove $P_{12}(V)>0$ and $P_{24}(V)>1$ (which answers an open problem of J. Kollar and S. Mori). We also prove that the canonical volume has an universal lower bound $text{Vol}(V) geq 1/2660$ and that the pluri-canonical map $Phi_m$ is birational onto its image for all $mgeq 77$. As an application of our method, we prove Fletchers conjecture on weighted hyper-surface 3-folds with terminal quotient singularities. Another featured result is the optimal lower bound $text{Vol}(V)geq {1/420}$ among all those 3-folds $V$ with $chi({mathcal O}_V)leq 1$.
In this paper, we show that Fujitas basepoint-freeness conjecture for projective quasi-log canonical singularities holds true in dimension three. Immediately, we prove Fujita-type basepoint-freeness for projective semi-log canonical threefolds.
In this paper, we prove that the group $mathrm{Aut}_mathbb{Q}(X)$ of numerically trivial automorphisms are uniformly bounded for smooth projective threefolds $X$ of general type which either satisfy $q(X)geq 3$ or have a Gorenstein minimal model. If $X$ is furthermore of maximal Albanese dimension, then $|mathrm{Aut}_mathbb{Q}(X)|leq 4$, and equality can be achieved by an unbounded family of threefolds previously constructed by the third author. Along the way we prove a Noether type inequality for log canonical pairs of general type with the coefficients of the boundary divisor from a given subset $mathcal{C}subset (0,1]$ such that $mathcal{C}cup{1}$ attains the minimum.