Do you want to publish a course? Click here

A consistent model for leptogenesis, dark matter and the IceCube signal

110   0   0.0 ( 0 )
 Added by Nicolao Fornengo
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss a left-right symmetric extension of the Standard Model in which the three additional right-handed neutrinos play a central role in explaining the baryon asymmetry of the Universe, the dark matter abundance and the ultra energetic signal detected by the IceCube experiment. The energy spectrum and neutrino flux measured by IceCube are ascribed to the decays of the lightest right-handed neutrino $N_1$, thus fixing its mass and lifetime, while the production of $N_1$ in the primordial thermal bath occurs via a freeze-in mechanism driven by the additional $SU(2)_R$ interactions. The constraints imposed by IceCube and the dark matter abundance allow nonetheless the heavier right-handed neutrinos to realize a standard type-I seesaw leptogenesis, with the $B-L$ asymmetry dominantly produced by the next-to-lightest neutrino $N_2$. Further consequences and predictions of the model are that: the $N_1$ production implies a specific power-law relation between the reheating temperature of the Universe and the vacuum expectation value of the $SU(2)_R$ triplet; leptogenesis imposes a lower bound on the reheating temperature of the Universe at $7times10^9,mbox{GeV}$. Additionally, the model requires a vanishing absolute neutrino mass scale $m_1simeq0$.



rate research

Read More

We propose a model of asymmetric dark matter (DM) where the dark sector is an identical copy of both forces and matter of the standard model (SM) as in the mirror universe models discussed in literature. In addition to being connected by gravity, the SM and DM sectors are also connected at high temperature by a common set of heavy right-handed Majorana neutrinos via their Yukawa couplings to leptons and Higgs bosons. The lightest nucleon in the dark (mirror) sector is a candidate for dark matter. The out of equilibrium decay of right-handed neutrino produces equal lepton asymmetry in both sectors via resonant leptogenesis which then get converted to baryonic and dark baryonic matter. The dark baryon asymmetry due to higher dark nucleon masses leads to higher dark matter density compared to the familiar baryon density that is observed. The standard model neutrinos in this case acquire masses from the inverse seesaw mechanism. A kinetic mixing between the U(1) gauge fields of the two sectors is introduced to guarantee the success of Big-Bang Nucleosynthesis.
We study the minimal scotogenic model constituting an additional inert Higgs doublet and three sets of right-handed neutrinos. The scotogenic model connects dark matter, baryon asymmetry of the Universe and neutrino oscillation data. In our work, we obtain baryogenesis by the decay of TeV scale heavy neutral singlet fermion ($N_{2}$). We primarily focus on the intermediate-mass region of dark matter within $M_W<M_{DM}le550$ GeV, where observed relic density is suppressed due to co-annihilation processes. We consider thermal as well as the non-thermal approach of dark matter production and explore the possibility of the lightest stable candidate being a dark matter candidate. Within the inert Higgs doublet (IHD) desert, we explore a new allowed region of dark matter masses for the non-thermal generation of dark matter with a mass splitting of 10 GeV among the inert scalars. We also see the variation of relic abundance for unequal mass splitting among the scalars. The KamLand-Zen bound on the effective mass of the active neutrinos is also verified in this study.
We show that the presence of nearby Coulombic resonances at finite energy could lead to the enhancement of the dark matter annihilation cross section at specific non-zero velocities correlated with the mass splitting between the dark matter pair and that of the resonance. If one of these resonant velocities approximately matches the velocity of dark matter in our local neighbourhood, we would see this enhancement in existing indirect-detection measurements, such as the measurements of the continuum photon spectrum made by HESS and Fermi-LAT. We explore this effect in the context of pure Higgsino and Wino dark matter with a variable splitting between charged and neutral components, controlled by the Wilson coefficient of a higher-dimension operator. For electroweak WIMPs a relevant and appreciable enhancement from Coulomb resonances requires tuning the charged-neutral splitting to be of order the Coulomb binding energies. This leads to strong exclusions of Higgsino dark matter with charged-neutral splittings in the narrow ranges (2, 2.5) and (8.5, 10.5) MeV. In contrast, by decreasing the charged-neutral splitting for the thermal Wino, we can move the Yukawa resonance away from the thermal relic mass, decreasing the indirect-detection signal to a level that is compatible with HESS measurements in the window (25, 35) MeV.
156 - J.B.G. Alvey , M. Fairbairn 2019
Two of the key unresolved issues facing Standard Model physics are (i) the appearance of a small but non-zero neutrino mass, and, (ii) the missing mass problem in the Universe. The focus of this paper is a previously proposed low energy effective theory that couples a dark scalar to Standard Model neutrinos. This provides a stable dark matter candidate as well as radiatively generating a neutrino mass. Within this framework we will then construct an entirely new bound from the IceCube-170922A event which takes into account (i) the possible neutrino mass hierarchies, (ii) the effect of cosmological redshift on e.g. the number density of cosmic neutrino background neutrinos, and, (iii) the non-degeneracy of neutrino mass and flavour eigenstates. This builds on work by Kelly and Machado (2018), where the authors placed new constraints on neutrinophilic and axion dark matter models. At low mediator masses, we find an improvement of an order of magnitude on current constraints from kaon decays. The constraint is complimentary (and slightly weaker) than current constraints from Big Bang Nucleosynthesis and the Cosmic Microwave Background. We explore how future higher energy events could improve this bound.
After the first four years of data taking, the IceCube neutrino telescope has observed 54 high-energy starting events (HESE) with deposited energies between 20 TeV and 2 PeV. The background from atmospheric muons and neutrinos is expected to be of about 20 events, all below 100 TeV, thus pointing towards the astrophysical origin of about 8 events per year in that data set. However, their precise origin remains unknown. Here, we perform a detailed analysis of this event sample (considering simultaneously the energy, hemisphere and topology of the events) by assuming two contributions for the signal events: an isotropic power-law flux and a flux from decaying heavy dark matter. We fit the mass and lifetime of the dark matter and the normalization and spectral index of an isotropic power-law flux, for various decay channels of dark matter. We find that a significant contribution from dark matter decay is always slightly favored, either to explain the excess below 100 TeV, as in the case of decays to quarks or, as in the case of neutrino channels, to explain the three multi-PeV events. Also, we consider the possibility to interpret all the data by dark matter decays only, considering various combinations of two decay channels. We show that the decaying dark matter scenario provides a better fit to HESE data than the isotropic power-law flux.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا