Do you want to publish a course? Click here

Linking Scalar Dark Matter and Neutrino Masses with IceCube 170922A

157   0   0.0 ( 0 )
 Added by James Alvey
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two of the key unresolved issues facing Standard Model physics are (i) the appearance of a small but non-zero neutrino mass, and, (ii) the missing mass problem in the Universe. The focus of this paper is a previously proposed low energy effective theory that couples a dark scalar to Standard Model neutrinos. This provides a stable dark matter candidate as well as radiatively generating a neutrino mass. Within this framework we will then construct an entirely new bound from the IceCube-170922A event which takes into account (i) the possible neutrino mass hierarchies, (ii) the effect of cosmological redshift on e.g. the number density of cosmic neutrino background neutrinos, and, (iii) the non-degeneracy of neutrino mass and flavour eigenstates. This builds on work by Kelly and Machado (2018), where the authors placed new constraints on neutrinophilic and axion dark matter models. At low mediator masses, we find an improvement of an order of magnitude on current constraints from kaon decays. The constraint is complimentary (and slightly weaker) than current constraints from Big Bang Nucleosynthesis and the Cosmic Microwave Background. We explore how future higher energy events could improve this bound.



rate research

Read More

Astrophysical neutrinos travel long distances from their sources to the Earth traversing dark matter halos of clusters of galaxies and that of our own Milky Way. The interaction of neutrinos with dark matter may affect the flux of neutrinos. The recent multi-messenger observation of a high energy neutrino, IceCube-170922A, can give a robust upper bound $sigma /M_{dm} lesssim 5.1times 10^{-23} {rm cm}^2 /$GeV on the interaction between neutrino and dark matter at a neutrino energy of 290 TeV allowing 90% suppression. Combining the constraints from CMB and LSS at different neutrino energies, we can constrain models of dark matter-neutrino interactions.
We consider a renormalizable theory, which successfully explains the number of Standard Model (SM) fermion families and whose non-SM scalar sector includes an axion dark matter as well as a field responsible for cosmological inflation. In such theory, the axion gets its mass via radiative corrections at one-loop level mediated by virtual top quark, right handed Majorana neutrinos and SM gauge bosons. Its mass is obtained in the range $4$ keV$div$ $40$ keV, consistent with the one predicted by XENON1T experiment, when the right handed Majorana neutrino mass is varied from $100$ GeV up to $350$ GeV, thus implying that the light active neutrino masses are generated from a low scale type I seesaw mechanism. Furthermore, the theory under consideration can also successfully accommodates the XENON1T excess provided that the PQ symmetry is spontaneously broken at the $10^{10}$ GeV scale.
We propose a simple scenario that directly connects the dark matter (DM) and neutrino mass scales. Based on an interaction between the DM particle $chi$ and the neutrino $ u$ of the form $chichi u u/Lambda^2$, the DM annihilation cross section into the neutrino is determined and a neutrino mass is radiatively induced. Using the observed neutrino mass scale and the DM relic density, the DM mass and the effective scale $Lambda$ are found to be of the order MeV and GeV, respectively. We construct an ultraviolet-complete toy model based on the inverse seesaw mechanism which realizes this potential connection between DM and neutrino physics.
214 - Chung Kao , Yue-Lin Sming Tsai , 2020
The cold dark matter (CDM) candidate with weakly interacting massive particles can successfully explain the observed dark matter relic density in cosmic scale and the large-scale structure of the Universe. However, a number of observations at the satellite galaxy scale seem to be inconsistent with CDM simulation. This is known as the small-scale problem of CDM. In recent years, it has been demonstrated that self-interacting dark matter (SIDM) with a light mediator offers a reasonable explanation for the small-scale problem. We adopt a simple model with SIDM and focus on the effects of Sommerfeld enhancement. In this model, the dark matter candidate is a leptonic scalar particle with a light mediator. We have found several regions of the parameter space with proper masses and coupling strength generating a relic density that is consistent with the observed CDM relic density. Furthermore, this model satisfies the constraints of recent direct searches and indirect detection for dark matter as well as the effective number of neutrinos and the observed small-scale structure of the Universe. In addition, this model with the favored parameters can resolve the discrepancies between astrophysical observations and $N$-body simulations.
BLMSSM is the extension of the minimal supersymmetric standard model(MSSM). Its local gauge group is $SU(3)_C times SU(2)_L times U(1)_Y times U(1)_B times U(1)_L$. Supposing the lightest scalar neutrino is dark matter candidate, we study the relic density and the spin independent cross section of sneutrino scattering off nucleon. We calculate the numerical results in detail and find suitable parameter space. The numerical discussion can confine the parameter space and provide a reference for dark matter research.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا