Do you want to publish a course? Click here

Identifying Phase Space Boundaries with Voronoi Tessellations

60   0   0.0 ( 0 )
 Added by Doojin Kim
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis.



rate research

Read More

The covariant phase space method of Iyer, Lee, Wald, and Zoupas gives an elegant way to understand the Hamiltonian dynamics of Lagrangian field theories without breaking covariance. The original literature however does not systematically treat total derivatives and boundary terms, which has led to some confusion about how exactly to apply the formalism in the presence of boundaries. In particular the original construction of the canonical Hamiltonian relies on the assumed existence of a certain boundary quantity $B$, whose physical interpretation has not been clear. We here give an algorithmic procedure for applying the covariant phase space formalism to field theories with spatial boundaries, from which the term in the Hamiltonian involving $B$ emerges naturally. Our procedure also produces an additional boundary term, which was not present in the original literature and which so far has only appeared implicitly in specific examples, and which is already nonvanishing even in general relativity with sufficiently permissive boundary conditions. The only requirement we impose is that at solutions of the equations of motion the action is stationary modulo future/past boundary terms under arbitrary variations obeying the spatial boundary conditions; from this the symplectic structure and the Hamiltonian for any diffeomorphism that preserves the theory are unambiguously constructed. We show in examples that the Hamiltonian so constructed agrees with previous results. We also show that the Poisson bracket on covariant phase space directly coincides with the Peierls bracket, without any need for non-covariant intermediate steps, and we discuss possible implications for the entropy of dynamical black hole horizons.
111 - Kai Shi , Xuan Wang , Yihong Xiu 2020
By imposing the boundary condition associated with the boundary structure of the null boundaries rather than the usual one, we find that the key requirement in Harlow-Wus algorithm fails to be met in the whole covariant phase space. Instead, it can be satisfied in its submanifold with the null boundaries given by the expansion free and shear free hypersurfaces in Einsteins gravity, which can be regarded as the origin of the non-triviality of null boundaries in terms of Wald-Zoupass prescription. But nevertheless, by sticking to the variational principle as our guiding principle and adapting Harlow-Wus algorithm to the aforementioned submanifold, we successfully reproduce the Hamiltonians obtained previously by Wald-Zoupas prescription, where not only are we endowed with the expansion free and shear free null boundary as the natural stand point for the definition of the Hamiltonian in the whole covariant phase space, but also led naturally to the correct boundary term for such a definition.
We compute boundary correlation functions for scalar fields on tessellations of two- and three-dimensional hyperbolic geometries. We present evidence that the continuum relation between the scalar bulk mass and the scaling dimension associated with boundary-to-boundary correlation functions survives the truncation of approximating the continuum hyperbolic space with a lattice.
434 - Benjamin R. Granett 2016
We introduce an algorithm to estimate the redshift distribution of a sample of galaxies selected photometrically given a subsample with measured spectroscopic redshifts. The approach uses a non-parametric Voronoi tessellation density estimator to interpolate the galaxy distribution in the redshift and photometric color space. We test the method on a mock dataset with a known color-redshift distribution. We find that the Voronoi tessellation estimator performs well at reconstructing the tails of the redshift distribution of individual galaxies and gives unbiased estimates of the first and second moments. The source code is publicly available at http://bitbucket.org/bengranett/tailz.
146 - Pierre Calka 2012
In this paper, we construct a new family of random series defined on $R^D$, indexed by one scaling parameter and two Hurst-like exponents. The model is close to Takagi-Knopp functions, save for the fact that the underlying partitions of $R^D$ are not the usual dyadic meshes but random Voronoi tessellations generated by Poisson point processes. This approach leads us to a continuous function whose random graph is shown to be fractal with explicit and equal box and Hausdorff dimensions. The proof of this main result is based on several new distributional properties of the Poisson-Voronoi tessellation on the one hand, an estimate of the oscillations of the function coupled with an application of a Frostman-type lemma on the other hand. Finally, we introduce two related models and provide in particular a box-dimension calculation for a derived deterministic Takagi-Knopp series with hexagonal bases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا