Do you want to publish a course? Click here

Andreev reflection near the Dirac point at Graphene - NbSe2 junction

62   0   0.0 ( 0 )
 Added by Manas Ranjan Sahu
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Despite extensive search for about a decade, specular Andreev reflection is only recently realized in bilayer graphene-superconductor interface. However, the evolution from the typical retro type Andreev reflection to the unique specular Andreev reflection in single layer graphene has not yet been observed. We investigate this transition by measuring the differential conductance at the van der Walls interface of single layer graphene and NbSe2 superconductor. We find that the normalized conductance becomes suppressed as we pass through the Dirac cone via tuning the Fermi level and bias energy, which manifests the transition from retro to non-retro type Andreev reflection. The suppression indicates the blockage of Andreev reflection beyond a critical angle of the incident electron with respect to the normal between the single layer graphene and the superconductor junction. The results are compared with a theoretical model of the corresponding setup.



rate research

Read More

Superconductivity and quantum Hall effect are distinct states of matter occurring in apparently incompatible physical conditions. Recent theoretical developments suggest that the coupling of quantum Hall effect with a superconductor can provide a fertile ground for realizing exotic topological excitations such as non-abelian Majorana fermions or Fibonacci particles. As a step toward that goal, we report observation of Andreev reflection at the junction of a quantum Hall edge state in a single layer graphene and a quasi-two dimensional niobium diselenide (NbSe2) superconductor. Our principal finding is the observation of an anomalous finite-temperature conductance peak located precisely at the Dirac point, providing a definitive evidence for inter-Landau level Andreev reflection in a quantum Hall system. Our observations are well supported by detailed numerical simulations, which offer additional insight into the role of the edge states in Andreev physics. This study paves the way for investigating analogous Andreev reflection in a fractional quantum Hall system coupled to a superconductor to realize exotic quasiparticles.
We study Andreev reflection in graphene nanoribbon/superconductor hybrid junctions. By using a tight-binding approach and the scattering formalism we show that finite-size effects lead to notable differences with respect to the bulk graphene case. At subgap voltages, conservation of pseudoparity, a quantum number characterizing the ribbon states, yields either a suppression of Andreev reflection when the ribbon has an even number of sites in the transverse direction or perfect Andreev reflection when the ribbon has an odd number of sites. In the former case the suppression of Andreev reflection induces an insulating behavior even when the junction is biased; electron conduction can however be restored by applying a gate voltage.
Coherent charge transport along ballistic paths can be introduced into graphene by Andreev reflection, for which an electron reflects from a superconducting contact as a hole, while a Cooper pair is transmitted. We use a liquid-helium cooled scanning gate microscope (SGM) to image Andreev reflection in graphene in the magnetic focusing regime, where carriers move along cyclotron orbits between contacts. Images of flow are obtained by deflecting carrier paths and displaying the resulting change in conductance. When electrons enter the the superconductor, Andreev-reflected holes leave for the collecting contact. To test the results, we destroy Andreev reflection with a large current and by heating above the critical temperature. In both cases, the reflected carriers change from holes to electrons.
The charge carrier density in graphene on a dielectric substrate such as SiO$_2$ displays inhomogeneities, the so-called charge puddles. Because of the linear dispersion relation in monolayer graphene, the puddles are predicted to grow near charge neutrality, a markedly distinct property from conventional two-dimensional electron gases. By performing scanning tunneling microscopy/spectroscopy on a mesoscopic graphene device, we directly observe the puddles growth, both in spatial extent and in amplitude, as the Dirac point is approached. Self-consistent screening theory provides a unified description of both the macroscopic transport properties and the microscopically observed charge disorder.
We present an experimental study of nonlocal electrical signals near the Dirac point in graphene. The in-plane magnetic field dependence of the nonlocal signal confirms the role of spin in this effect, as expected from recent predictions of Zeeman spin Hall effect in graphene, but our experiments show that thermo-magneto-electric effects also contribute to nonlocality, and the effect is sometimes stronger than that due to spin. Thermal effects are seen to be very sensitive to sample details that do not influence other transport parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا