Do you want to publish a course? Click here

TensorFlow: A system for large-scale machine learning

145   0   0.0 ( 0 )
 Added by Derek Murray
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous parameter server designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with particularly strong support for training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model in contrast to existing systems, and demonstrate the compelling performance that TensorFlow achieves for several real-world applications.



rate research

Read More

Machine learning has proved to be a useful tool for extracting knowledge from scientific data in numerous research fields, including astrophysics, genomics, and molecular dynamics. Often, data sets from these research areas need to be processed in distributed platforms due to their magnitude. This can be done using one of the various distributed machine learning libraries available. One of these libraries is dislib, a distributed machine learning library for Python especially designed to process large scale data sets on HPC clusters, which makes dislib an ideal candidate for analyzing scientific data. However, dislibs main distributed data structure, called Dataset, has some limitations, including poor performance in certain operations and low flexibility and usability. In this paper, we propose a novel distributed data structure for dislib, called ds-array, that addresses dislibs main limitations in data management. Ds-arrays simplify distributed data management in dislib by exposing a NumPy-like API, provide more flexibility, and reduce the computational complexity of some operations. This results in performance improvements of up to two orders of magnitude over Datasets, while also greatly improving scalability and usability.
Deep learning inference on embedded devices is a burgeoning field with myriad applications because tiny embedded devices are omnipresent. But we must overcome major challenges before we can benefit from this opportunity. Embedded processors are severely resource constrained. Their nearest mobile counterparts exhibit at least a 100 -- 1,000x difference in compute capability, memory availability, and power consumption. As a result, the machine-learning (ML) models and associated ML inference framework must not only execute efficiently but also operate in a few kilobytes of memory. Also, the embedded devices ecosystem is heavily fragmented. To maximize efficiency, system vendors often omit many features that commonly appear in mainstream systems, including dynamic memory allocation and virtual memory, that allow for cross-platform interoperability. The hardware comes in many flavors (e.g., instruction-set architecture and FPU support, or lack thereof). We introduce TensorFlow Lite Micro (TF Micro), an open-source ML inference framework for running deep-learning models on embedded systems. TF Micro tackles the efficiency requirements imposed by embedded-system resource constraints and the fragmentation challenges that make cross-platform interoperability nearly impossible. The framework adopts a unique interpreter-based approach that provides flexibility while overcoming these challenges. This paper explains the design decisions behind TF Micro and describes its implementation details. Also, we present an evaluation to demonstrate its low resource requirement and minimal run-time performance overhead.
We introduce TensorFlow Quantum (TFQ), an open source library for the rapid prototyping of hybrid quantum-classical models for classical or quantum data. This framework offers high-level abstractions for the design and training of both discriminative and generative quantum models under TensorFlow and supports high-performance quantum circuit simulators. We provide an overview of the software architecture and building blocks through several examples and review the theory of hybrid quantum-classical neural networks. We illustrate TFQ functionalities via several basic applications including supervised learning for quantum classification, quantum control, simulating noisy quantum circuits, and quantum approximate optimization. Moreover, we demonstrate how one can apply TFQ to tackle advanced quantum learning tasks including meta-learning, layerwise learning, Hamiltonian learning, sampling thermal states, variational quantum eigensolvers, classification of quantum phase transitions, generative adversarial networks, and reinforcement learning. We hope this framework provides the necessary tools for the quantum computing and machine learning research communities to explore models of both natural and artificial quantum systems, and ultimately discover new quantum algorithms which could potentially yield a quantum advantage.
A major driver behind the success of modern machine learning algorithms has been their ability to process ever-larger amounts of data. As a result, the use of distributed systems in both research and production has become increasingly prevalent as a means to scale to this growing data. At the same time, however, distributing the learning process can drastically complicate the implementation of even simple algorithms. This is especially problematic as many machine learning practitioners are not well-versed in the design of distributed systems, let alone those that have complicated communication topologies. In this work we introduce Launchpad, a programming model that simplifies the process of defining and launching distributed systems that is specifically tailored towards a machine learning audience. We describe our framework, its design philosophy and implementation, and give a number of examples of common learning algorithms whose designs are greatly simplified by this approach.
364 - Ji Liu , Jizhou Huang , Yang Zhou 2021
In recent years, data and computing resources are typically distributed in the devices of end users, various regions or organizations. Because of laws or regulations, the distributed data and computing resources cannot be directly shared among different regions or organizations for machine learning tasks. Federated learning emerges as an efficient approach to exploit distributed data and computing resources, so as to collaboratively train machine learning models, while obeying the laws and regulations and ensuring data security and data privacy. In this paper, we provide a comprehensive survey of existing works for federated learning. We propose a functional architecture of federated learning systems and a taxonomy of related techniques. Furthermore, we present the distributed training, data communication, and security of FL systems. Finally, we analyze their limitations and propose future research directions.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا