Do you want to publish a course? Click here

Angular Momentum Regulates Atomic Gas Fractions of Galactic Disks

140   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the mass fraction f_atm = 1.35*MHI/M of neutral atomic gas (HI and He) in isolated local disk galaxies of baryonic mass M is well described by a straightforward stability model for flat exponential disks. In the outer disk parts, where gas at the characteristic dispersion of the warm neutral medium is stable in the sense of Toomre (1964), the disk consists of neutral atomic gas; conversely the inner part where this medium would be Toomre-unstable, is dominated by stars and molecules. Within this model, f_atm only depends on a global stability parameter q=j*sigma/(GM), where j is the baryonic specific angular momentum of the disk and sigma the velocity dispersion of the atomic gas. The analytically derived first-order solution f_atm = min{1,2.5q^1.12} provides a good fit to all plausible rotation curves. This model, with no free parameters, agrees remarkably well (+-0.2 dex) with measurements of f_atm in isolated local disk galaxies, even with galaxies that are extremely HI-rich or HI-poor for their mass. The finding that f_atm increases monotonically with q for pure stability reasons offers a powerful intuitive explanation for the mean variation of f_atm with M: in a cold dark matter universe galaxies are expected to follow j~M^(2/3), which implies the average scaling q~M^(-1/3) and hence f_atm~M^(-0.37), in agreement with observations.



rate research

Read More

The feedback from an active galactic nucleus (AGN) is frequently invoked as a mechanism through which gas can be heated or removed from a galaxy. However, gas fraction measurements in AGN hosts have yielded mixed support for this scenario. Here, we re-visit the assessment of fgas (=MHI/M*) in z<0.05 AGN hosts in the Sloan Digital Sky Survey (SDSS) using two complementary techniques. First, we investigate fgas for 75 AGN host galaxies in the extended GALEX Arecibo SDSS Survey (xGASS), whose atomic gas fractions are complete to a few percent. Second, we construct HI spectral stacks of 1562 AGN from the Arecibo Legacy Fast ALFA (ALFALFA) survey, which enables us to extend the AGN sample to lower stellar masses. Both techniques find that, at fixed M*, AGN hosts with log M*>10.2 are HI rich by a factor of ~2. However, this gas fraction excess disappears when the control sample is additionally matched in star formation rate (SFR), indicating that these AGN hosts are actually HI normal. At lower stellar mass, the stacking analysis reveals that AGN hosts are HI poor at fixed stellar mass. In the lowest M* regime probed by our sample, 9<log M*<9.6, the HI deficit in AGN hosts is a factor of ~4, and remains at a factor of ~2 even when the control sample is additionally matched in SFR. Our results help reconcile previously conflicting results, by showing that matching control samples by more than just stellar mass is critical for a rigourous comparison.
Recent studies of neutral atomic hydrogen (HI) in nearby galaxies found that all field disk galaxies are HI saturated, in that they carry roughly as much HI as permitted before this gas becomes gravitationally unstable. By taking this HI saturation for granted, the atomic gas fraction $f_{rm atm}$ of galactic disks can be predicted as a function of the stability parameter $q=jsigma/(GM)$, where $M$ and $j$ are the baryonic mass and specific angular momentum of the disk and $sigma$ is the HI velocity dispersion Obreschkow et al. 2016. The log-ratio $Delta f_q$ between this predictor and the observed atomic fraction can be seen as a physically motivated `HI deficiency. While field disk galaxies have $Delta f_q approx0$, objects subject to environmental removal of HI are expected to have $Delta f_q>0$. Within this framework, we revisit the HI deficiencies of satellite galaxies in the Virgo cluster and in clusters of the EAGLE simulation. We find that observed and simulated cluster galaxies are HI deficient and that $Delta f_q$ slightly increases when getting closer to the cluster centres. The $Delta f_q$ values are similar to traditional HI deficiency estimators, but $Delta f_q$ is more directly comparable between observations and simulations than morphology-based deficiency estimators. By tracking the simulated HI deficient cluster galaxies back in time, we confirm that $Delta f_qapprox0$ until the galaxies first enter a halo with $M_{rm halo}>10^{13} {rm M_{odot}}$, at which moment they quickly lose HI by environmental effects. Finally, we use the simulation to investigate the links between $Delta f_q$ and quenching of star formation.
57 - Sharon E. Meidt 2015
In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars -- internal structure vs. external, environmental influences -- providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating isothermal cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itself inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and, at the same time, provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.
Using a set of 15 high-resolution magnetohydrodynamic cosmological simulations of Milky Way formation, we investigate the origin of the baryonic material found in stars at redshift zero. We find that roughly half of this material originates from subhalo/satellite systems and half is smoothly accreted from the Inter-Galactic Medium (IGM). About $90 %$ of all material has been ejected and re-accreted in galactic winds at least once. The vast majority of smoothly accreted gas enters into a galactic fountain that extends to a median galactocentric distance of $sim 20$ kpc with a median recycling timescale of $sim 500$ Myr. We demonstrate that, in most cases, galactic fountains acquire angular momentum via mixing of low-angular momentum, wind-recycled gas with high-angular momentum gas in the Circum-Galactic Medium (CGM). Prograde mergers boost this activity by helping to align the disc and CGM rotation axes, whereas retrograde mergers cause the fountain to lose angular momentum. Fountain flows that promote angular momentum growth are conducive to smooth evolution on tracks quasi-parallel to the disc sequence of the stellar mass-specific angular momentum plane, whereas retrograde minor mergers, major mergers and bar-driven secular evolution move galaxies towards the bulge-sequence. Finally, we demonstrate that fountain flows act to flatten and narrow the radial metallicity gradient and metallicity dispersion of disc stars, respectively. Thus, the evolution of galactic fountains depends strongly on the cosmological merger history and is crucial for the chemo-dynamical evolution of Milky Way-sized disc galaxies.
We show that the stellar specific angular momentum j_*, mass M_*, and bulge fraction beta_* of normal galaxies of all morphological types are consistent with a simple model based on a linear superposition of independent disks and bulges. In this model, disks and bulges follow scaling relations of the form j_*d ~ M_*d^alpha and j_*b ~ M_*b^alpha with alpha = 0.67 +/- 0.07 but offset from each other by a factor of 8 +/- 2 over the mass range 8.9 <= log M_*/M_Sun <= 11.8. Separate fits for disks and bulges alone give alpha = 0.58 +/- 0.10 and alpha = 0.83 +/- 0.16, respectively. This model correctly predicts that galaxies follow a curved 2D surface in the 3D space of log j_*, log M_*, and beta_*. We find no statistically significant indication that galaxies with classical and pseudo bulges follow different relations in this space, although some differences are permitted within the observed scatter and the inherent uncertainties in decomposing galaxies into disks and bulges. As a byproduct of this analysis, we show that the j_*--M_* scaling relations for disk-dominated galaxies from several previous studies are in excellent agreement with each other. In addition, we resolve some conflicting claims about the beta_*-dependence of the j_*--M_* scaling relations. The results presented here reinforce and extend our earlier suggestion that the distribution of galaxies with different beta_* in the j_*--M_* diagram constitutes an objective, physically motivated alternative to subjective classification schemes such as the Hubble sequence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا