Do you want to publish a course? Click here

Depletion region surface effects in electron beam induced current measurements

116   0   0.0 ( 0 )
 Added by Paul Haney Mr.
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the $p$-$n$ junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.



rate research

Read More

Superconducting nanowires can be fabricated by decomposition of an organometallic gas using a focused beam of Ga ions. However, physical damage and unintentional doping often results from the exposure to the ion beam, motivating the search for a means to achieve similar structures with a beam of electrons instead of ions. This has so far remained an experimental challenge. We report the fabrication of superconducting tungsten nanowires by electron-beam-induced-deposition, with critical temperature of 2.0 K and critical magnetic field of 3.7 T, and compare them with superconducting wires made with ions. This work opens up new possibilities for the realization of nanoscale superconducting devices, without the requirement of an ion beam column.
Fe-Si binary compounds have been fabricated by focused electron beam induced deposition by the alternating use of iron pentacarbonyl, Fe(CO)5, and neopentasilane, Si5H12 as precursor gases. The fabrication procedure consisted in preparing multilayer structures which were treated by low-energy electron irradiation and annealing to induce atomic species intermixing. In this way we are able to fabricate FeSi and Fe3Si binary compounds from [Fe=Si]2 and [Fe3=Si]2 multilayers, as shown by transmission electron microscopy investigations. This fabrication procedure is useful to obtain nanostructured binary alloys from precursors which compete for adsorption sites during growth and, therefore, cannot be used simultaneously.
The separation of hot carriers in semiconductors is of interest for applications such as thermovoltaic photodetection and third-generation photovoltaics. Semiconductor nanowires offer several potential advantages for effective hot-carrier separation such as: a high degree of control and flexibility in heterostructure-based band engineering, increased hot-carrier temperatures compared to bulk, and a geometry well suited for local control of light absorption. Indeed, InAs nanowires with a short InP energy barrier have been observed to produce electric power under global illumination, with an open-circuit voltage exceeding the Shockley-Queisser limit. To understand this behaviour in more detail, it is necessary to maintain control over the precise location of electron-hole pair-generation in the nanowire. In this work we perform electron-beam induced current measurements with high spatial resolution, and demonstrate the role of the InP barrier in extracting energetic electrons. We interprete the results in terms of hot-carrier separation, and extract estimates of the hot carrier mean free path.
Atom-by-atom assembly of functional materials and devices is perceived as one of the ultimate targets of nanoscience and nanotechnology. While traditionally implemented via scanning probe microscopy techniques, recently it has been shown that the beam of a scanning transmission electron microscope can be used for targeted manipulation of individual atoms. However, the process is highly dynamic in nature and proceeds via a large number of weakly-understood individual steps. Hence, harnessing an electron beam towards atomic assembly requires automated methods to control the parameters and positioning of the beam in such a way as to fabricate atomic-scale structures reliably. Here, we create a molecular dynamics environment wherein individual atom velocities can be modified, effectively simulating a beam-induced interaction, and apply reinforcement learning to model construction of specific atomic units consisting of Si dopant atoms on a graphene lattice. We find that it is possible to engineer the reward function of the agent in such a way as to encourage formation of local clusters of dopants, whilst at the same time minimizing the amplitude of momentum changes. Inspection of the learned policies indicates that of fundamental importance is the component of velocity perpendicular to the material plane, and further, that the high stochasticity of the environment leads to conservative policies. This study shows the potential for reinforcement learning agents trained in simulated environments for potential use as atomic scale fabricators, and further, that the dynamics learned by agents encode specific elements of important physics that can be learned.
In the majority of cases nanostructures prepared by focused electron beam induced deposition (FEBID) employing an organometallic precursor contain predominantly carbon-based ligand dissociation products. This is unfortunate with regard to using this high-resolution direct-write approach for the preparation of nanostructures for various fields, such as mesoscopic physics, micromagnetism, electronic correlations, spin-dependent transport and numerous applications. Here we present an in-situ cleaning approach to obtain pure Co-FEBID nanostructures. The purification procedure lies in the exposure of heated samples to a H$_2$ atmosphere in conjunction with the irradiation by low-energy electrons. The key finding is that the combination of annealing at $300^circ$C, H$_2$ exposure and electron irradiation leads to compact, carbon- and oxygen free Co layers down to a thickness of about 20,nm starting from as-deposited Co-FEBID structures. In addition to this, in temperature-dependent electrical resistance measurements on post-processed samples we find a typical metallic behavior. In low-temperature magneto-resistance and Hall effect measurements we observe ferromagnetic behavior.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا