No Arabic abstract
Inspired by spring-block models, we elaborate a minimal physical model of earthquakes which reproduces two main empirical seismological laws, the Gutenberg-Richter law and the Omori aftershock law. Our new point is to demonstrate that the simultaneous incorporation of ageing of contacts in the sliding interface and of elasticity of the sliding plates constitute the minimal ingredients to account for both laws within the same frictional model.
We present theoretical arguments and simulation data indicating that the scaling of earthquake events in models of faults with long-range stress transfer is composed of at least three distinct regions. These regions correspond to three classes of earthquakes with different underlying physical mechanisms. In addition to the events that exhibit scaling, there are larger ``breakout events that are not on the scaling plot. We discuss the interpretation of these events as fluctuations in the vicinity of a spinodal critical point.
We report the study of a new experimental granular Brownian motor, inspired to the one published in [Phys. Rev. Lett. 104, 248001 (2010)], but different in some ingredients. As in that previous work, the motor is constituted by a rotating pawl whose surfaces break the rotation-inversion symmetry through alternated patches of different inelasticity, immersed in a gas of granular particles. The main novelty of our experimental setup is in the orientation of the main axis, which is parallel to the (vertical) direction of shaking of the granular fluid, guaranteeing an isotropic distribution for the velocities of colliding grains, characterized by a variance $v_0^2$. We also keep the granular system diluted, in order to compare with Boltzmann-equation-based kinetic theory. In agreement with theory, we observe for the first time the crucial role of Coulomb friction which induces two main regimes: (i) rare collisions (RC), with an average drift $ < omega > sim v_0^3$, and (ii) frequent collisions (FC), with $ < omega > sim v_0$. We also study the fluctuations of the angle spanned in a large time interval, $Delta theta$, which in the FC regime is proportional to the work done upon the motor. We observe that the Fluctuation Relation is satisfied with a slope which weakly depends on the relative collision frequency.
Simulated granular packings with different particle friction coefficient mu are examined. The distribution of the particle-particle and particle-wall normal and tangential contact forces P(f) are computed and compared with existing experimental data. Here f equivalent to F/F-bar is the contact force F normalized by the average value F-bar. P(f) exhibits exponential-like decay at large forces, a plateau/peak near f = 1, with additional features at forces smaller than the average that depend on mu. Computations of the force-force spatial distribution function and the contact point radial distribution function indicate that correlations between forces are only weakly dependent on friction and decay rapidly beyond approximately three particle diameters. Distributions of the particle-particle contact angles show that the contact network is not isotropic and only weakly dependent on friction. High force-bearing structures, or force chains, do not play a dominant role in these three dimensional, unloaded packings.
We study a simple lattice model of shear-induced clustering in two dimensions in which clusters of particles aggregate under an imposed shear flow and fragment stochastically. Two non-equilibrium steady states are identified: an unjammed state and a jammed state characterised by a system-spanning cluster. A discontinuous jamming transition with strong hysteresis occurs as the shear rate is increased or fragmentation rate decreased. We study the kinetics of jamming and measure power law cluster size distributions. We also consider some general simulation issues including the role of Galilean invariance.
Liquid-liquid phase separation of liquids exhibiting interconversion between alternative states has been proposed as an underlying mechanism for fluid polyamorphism, and may be of relevance to protein function and intracellular organization. However, molecular-level insight into the interplay between competing forces that can drive or restrict phase separation in interconverting fluids remains elusive. Here, we utilize an off-lattice model of enantiomers with tunable chiral interconversion and interaction properties to elucidate the physics underlying the stabilization and tunability of phase separation in fluids with interconverting states. We show that introducing an imbalance in the intermolecular forces between two enantiomers results in nonequilibrium, arrested phase separation into microdomains. We also find that in the equilibrium case, when all interaction forces are conservative, the growth of the phase domain is restricted only by system size. In this case, we observe phase amplification, in which one of the two alternative phases grows at the expense of the other. These findings provide novel insights on how the interplay between dynamics and thermodynamics defines the equilibrium and steady-state morphologies of phase transitions in fluids with interconverting molecular or supramolecular states.