Do you want to publish a course? Click here

An achromatic break in the afterglow of the short GRB 140903A: evidence for a narrow jet

97   0   0.0 ( 0 )
 Added by Eleonora Troja
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of our observing campaign on GRB140903A, a nearby (z=0.351) short duration (T90~0.3 s) gamma-ray burst discovered by Swift. We monitored the X-ray afterglow with Chandra up to 21 days after the burst, and detected a steeper decay of the X-ray flux after approximately 1 day. Continued monitoring at optical and radio wavelengths showed a similar decay in flux at nearly the same time, and we interpret it as evidence of a narrowly collimated jet. By using the standard fireball model to describe the afterglow evolution, we derive a jet opening angle of 5 deg and a collimation-corrected total energy release of 2E50 erg. We further discuss the nature of the GRB progenitor system. Three main lines disfavor a massive star progenitor: the properties of the prompt gamma-ray emission, the age and low star-formation rate of the host galaxy, and the lack of a bright supernova. We conclude that this event was likely originated by a compact binary merger.



rate research

Read More

We investigate the long GRB140629A through multiwavelength observations, which cover optical, infrared and X-rays between 40s and 3yr after the burst, to derive the properties of the dominant jet and its host galaxy. Polarisation observations by the MASTER telescope indicate that this burst is weakly polarised. The optical spectrum contains absorption features, from which we confirm the redshift of the GRB as originating at z=2.276. We performed spectral fitting of the X-rays to optical afterglow data and find there is no strong spectral evolution. We determine the hydrogen column density to be 7.2x10^21cm^-2 along the line of sight. The afterglow in this burst can be explained by a blast wave jet with a long-lasting central engine expanding into a uniform medium in the slow cooling regime. At the end of energy injection, a normal decay phase is observed in both the optical and X-ray bands. An achromatic jet break is also found in the afterglow light curves 0.4d after trigger. We fit the multiwavelength data simultaneously with a model based on a numerical simulation and find that the observations can be explained by a narrow uniform jet in a dense environment with an opening angle of 6.7deg viewed 3.8deg off-axis, which released a total energy of 1.4x10^54erg. Using the redshift and opening angle, we find GRB 140629A follows both the Ghirlanda and Amati relations. From the peak time of the light curve, identified as the onset of the forward shock (181s after trigger), the initial Lorentz factor is constrained in the range 82-118. Fitting the host galaxy photometry, we find the host to be a low mass, star-forming galaxy with a star formation rate of logSFR=1.1^+0.9_-0.4Myr^-1. We obtain a value of the neutral hydrogen density by fitting the optical spectrum, logN(HI)=21.0+-0.3, classifying this host as a damped Lyman-alpha. High ionisation lines are also detected in the spectrum.
We investigate the shape of the jet break in within-beam gamma-ray burst (GRB) optical afterglows for various lateral jet structure profiles. We consider cases with and without lateral spreading and a range of inclinations within the jet core half-opening angle, $theta_c$. We fit model and observed afterglow lightcurves with a smoothly-broken power-law function with a free-parameter $kappa$ that describes the sharpness of the break. We find that the jet break is sharper ($kappa$ is greater) when lateral spreading is included than in the absence of lateral spreading. For profiles with a sharp-edged core, the sharpness parameter has a broad range of $0.1lesssimkappalesssim4.6$, whereas profiles with a smooth-edged core have a narrower range of $0.1lesssimkappalesssim2.2$ when models both with and without lateral spreading are included. For sharp-edged jets, the jet break sharpness depends strongly on the inclination of the system within $theta_c$, whereas for smooth-edged jets, $kappa$ is more strongly dependent on the size of $theta_c$. Using a sample of 20 GRBs we find nine candidate smooth-edged jet structures and eight candidate sharp-edged jet structures, while the remaining three are consistent with either. The shape of the jet break, as measured by the sharpness parameter $kappa$, can be used as an initial check for the presence of lateral structure in within-beam GRBs where the afterglow is well-sampled at and around the jet-break time.
We present broad-band observations of the afterglow and environment of the short GRB 111020A. An extensive X-ray light curve from Swift/XRT, XMM-Newton and Chandra, spanning ~100 seconds to 10 days after the burst, reveals a significant break at t~2 days with pre- and post-break decline rates of alphaX,1 ~ -0.78 and alphaX,2<-1.7, respectively. Interpreted as a jet break, we infer a collimated outflow with an opening angle of ~3-8 degrees. The resulting beaming-corrected gamma-ray (10-1000 keV band) and blastwave kinetic energies are (2-3)e48 erg and (0.3-2)e49 erg, respectively, with the range depending on the unknown redshift of the burst. We report a radio afterglow limit of <39 microJy (3-sigma) from EVLA observations which, along with our finding that vc<vX, constrains the circumburst density to n~0.01-0.1 cm^(-3). Optical observations provide an afterglow limit of i>24.4 mag at 18 hours after the burst, and reveal a potential host galaxy with i~24.3 mag. The sub-arcsecond localization from Chandra provides a precise offset of 0.80+/-0.11 (1-sigma) from this galaxy corresponding to an offset of 5-7 kpc for z=0.5-1.5. We find a high excess neutral Hydrogen column density of (7.5+/-2.0)e21 cm^(-2) (z=0). Our observations demonstrate that a growing fraction of short GRBs are collimated which may lead to a true event rate of >100-1000 Gpc^(-3) yr^(-1), in good agreement with the NS-NS merger rate of ~200-3000 Gpc^(-3) yr^(-1). This consistency is promising for coincident short GRB-gravitational wave searches in the forthcoming era of Advanced LIGO/VIRGO.
102 - Rupal Basak , A.R. Rao 2014
GRB 090618 is a bright GRB with multiple pulses. It shows evidence of thermal emission in the initial pulses as well as in the early afterglow phase. As high resolution spectral data of emph{Swift}/XRT is available for the early afterglow, we investigate the shape and evolution of the thermal component in this phase using data from the emph{Swift}/BAT, the emph{Swift}/XRT, and the emph{Fermi}/GBM detectors. An independent fit to the BAT and XRT data reveals two correlated blackbodies with monotonically decreasing temperatures. Hence we investigated the combined data with a model consisting of two blackbodies and a power-law (2BBPL), a model suggested for several bright GRBs. We elicit the following interesting features of the 2BBPL model: a) the same model is applicable from the peak of the last pulse in the prompt emission to the afterglow emission, b) the ratio of temperatures and the fluxes of the two black bodies remains constant throughout the observations, c) the black body temperatures and fluxes show a monotonic decrease with time, with the BB fluxes dropping about a factor of two faster than that of the power-law emission, d) attributing the blackbody emission to photospheric emissions, we find that the photospheric radii increase very slowly with time, and the lower temperature blackbody shows a larger emitting radius than that of the higher temperature black body. We find some evidence that the underlying shape of the non-thermal emission is a cut-off power-law rather than a power-law. We sketch a spine-sheath jet model to explain our observations.
The afterglow of GRB 170817A has been detected for more than three years, but the origin of the multi-band afterglow light curves remains under debate. A classical top-hat jet model is faced with difficulties in producing a shallow rise of the afterglow light curves as observed $(F_{ u} propto T^{0.8})$. Here we reconsider the model of stratified ejecta with energy profile of $E(>Gamma beta)=E_0(Gamma beta)^{-k}$ as the origin of the afterglow light curves of the burst, where $Gamma$ and $beta$ are the Lorentz factor and speed of the ejecta, respectively. $k$ is the power-law slope of the energy profile. We consider the ejecta are collimated into jets. Two kinds of jet evolutions are investigated, including a lateral-spreading jet and a non-lateral-spreading jet. We fit the multi-band afterglow light curves, including the X-ray data at one thousand days post-burst, and find that both the models of the spreading and non-spreading jets can fit the light curves well, but the observed angular size of the source and the apparent velocity of the flux centroid for the spreading jet model are beyond the observation limits, while the non-spreading jet model meets the observation limits. Some of the best-fit parameters for the non-spreading jet model, such as the number density of the circumburst medium $sim10^{-2}$ cm$^{-3}$ and the total jet kinetic energy $E sim 4.8times 10^{51}$ erg, also appear plausible. The best-fit slope of the jet energy profile is $k sim 7.1$. Our results suggest that the afterglow of GRB 170817A may arise from the stratified jet and that the lateral spreading of the jet is not significant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا