No Arabic abstract
We investigate the long GRB140629A through multiwavelength observations, which cover optical, infrared and X-rays between 40s and 3yr after the burst, to derive the properties of the dominant jet and its host galaxy. Polarisation observations by the MASTER telescope indicate that this burst is weakly polarised. The optical spectrum contains absorption features, from which we confirm the redshift of the GRB as originating at z=2.276. We performed spectral fitting of the X-rays to optical afterglow data and find there is no strong spectral evolution. We determine the hydrogen column density to be 7.2x10^21cm^-2 along the line of sight. The afterglow in this burst can be explained by a blast wave jet with a long-lasting central engine expanding into a uniform medium in the slow cooling regime. At the end of energy injection, a normal decay phase is observed in both the optical and X-ray bands. An achromatic jet break is also found in the afterglow light curves 0.4d after trigger. We fit the multiwavelength data simultaneously with a model based on a numerical simulation and find that the observations can be explained by a narrow uniform jet in a dense environment with an opening angle of 6.7deg viewed 3.8deg off-axis, which released a total energy of 1.4x10^54erg. Using the redshift and opening angle, we find GRB 140629A follows both the Ghirlanda and Amati relations. From the peak time of the light curve, identified as the onset of the forward shock (181s after trigger), the initial Lorentz factor is constrained in the range 82-118. Fitting the host galaxy photometry, we find the host to be a low mass, star-forming galaxy with a star formation rate of logSFR=1.1^+0.9_-0.4Myr^-1. We obtain a value of the neutral hydrogen density by fitting the optical spectrum, logN(HI)=21.0+-0.3, classifying this host as a damped Lyman-alpha. High ionisation lines are also detected in the spectrum.
We report the results of our observing campaign on GRB140903A, a nearby (z=0.351) short duration (T90~0.3 s) gamma-ray burst discovered by Swift. We monitored the X-ray afterglow with Chandra up to 21 days after the burst, and detected a steeper decay of the X-ray flux after approximately 1 day. Continued monitoring at optical and radio wavelengths showed a similar decay in flux at nearly the same time, and we interpret it as evidence of a narrowly collimated jet. By using the standard fireball model to describe the afterglow evolution, we derive a jet opening angle of 5 deg and a collimation-corrected total energy release of 2E50 erg. We further discuss the nature of the GRB progenitor system. Three main lines disfavor a massive star progenitor: the properties of the prompt gamma-ray emission, the age and low star-formation rate of the host galaxy, and the lack of a bright supernova. We conclude that this event was likely originated by a compact binary merger.
Gamma-ray burst (GRB) 150910A was detected by {it Swift}/BAT, and then rapidly observed by {it Swift}/XRT, {it Swift}/UVOT, and ground-based telescopes. We report Lick Observatory spectroscopic and photometric observations of GRB~150910A, and we investigate the physical origins of both the optical and X-ray afterglows, incorporating data obtained with BAT and XRT. The light curves show that the jet emission episode lasts $sim 360$~s with a sharp pulse from BAT to XRT (Episode I). In Episode II, the optical emission has a smooth onset bump followed by a normal decay ($alpha_{rm R,2} approx -1.36$), as predicted in the standard external shock model, while the X-ray emission exhibits a plateau ($alpha_{rm X,1} approx -0.36$) followed by a steep decay ($alpha_{rm X,2} approx -2.12$). The light curves show obvious chromatic behavior with an excess in the X-ray flux. Our results suggest that GRB 150910A is an unusual GRB driven by a newly-born magnetar with its extremely energetic magnetic dipole (MD) wind in Episode II, which overwhelmingly dominates the observed early X-ray plateau. The radiative efficiency of the jet prompt emission is $eta_{gamma} approx 11%$. The MD wind emission was detected in both the BAT and XRT bands, making it the brightest among the current sample of MD winds seen by XRT. We infer the initial spin period ($P_0$) and the surface polar cap magnetic field strength ($B_p$) of the magnetar as $1.02 times 10^{15}~{rm G} leq B_{p} leq 1.80 times 10^{15}~{rm G}$ and 1~ms $leq P_{0}vleq 1.77$~ms, and the radiative efficiency of the wind is $eta_w geq 32%$.
GRB 130925A was an unusual GRB, consisting of 3 distinct episodes of high-energy emission spanning $sim$20 ks, making it a member of the proposed category of `ultra-long bursts. It was also unusual in that its late-time X-ray emission observed by Swift was very soft, and showed a strong hard-to-soft spectral evolution with time. This evolution, rarely seen in GRB afterglows, can be well modelled as the dust-scattered echo of the prompt emission, with stringent limits on the contribution from the normal afterglow (i.e. external shock) emission. We consider and reject the possibility that GRB 130925A was some form of tidal disruption event, and instead show that if the circumburst density around GRB 130925A is low, the long duration of the burst and faint external shock emission are naturally explained. Indeed, we suggest that the ultra-long GRBs as a class can be explained as those with low circumburst densities, such that the deceleration time (at which point the material ejected from the nascent black hole is decelerated by the circumburst medium) is $sim$20 ks, as opposed to a few hundred seconds for the normal long GRBs. The increased deceleration radius means that more of the ejected shells can interact before reaching the external shock, naturally explaining both the increased duration of GRB 130925A, the duration of its prompt pulses, and the fainter-than-normal afterglow.
The optical light that is generated simultaneously with the x-rays and gamma-rays during a gamma-ray burst (GRB) provides clues about the nature of the explosions that occur as massive stars collapse to form black holes. We report on the bright optical flash and fading afterglow from the powerful burst GRB 130427A and present a comparison with the properties of the gamma-ray emission that show correlation of the optical and >100 MeV photon flux light curves during the first 7,000 seconds. We attribute this correlation to co-generation in an external shock. The simultaneous, multi-color, optical observations are best explained at early times by reverse shock emission generated in the relativistic burst ejecta as it collides with surrounding material and at late times by a forward shock traversing the circumburst environment. The link between optical afterglow and >100 MeV emission suggests that nearby early peaked afterglows will be the best candidates for studying GRB emission at GeV/TeV energies.
We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3-m telescopes to construct a detailed data set extending from 86 s to approximately 100,000 s after the BAT trigger. Our data cover a wide energy range, from 10 keV to 0.77 eV (1.24 to 16,000 Angstrom). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.