Do you want to publish a course? Click here

Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers

76   0   0.0 ( 0 )
 Added by Gregory Stiehl
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent discoveries regarding current-induced spin-orbit torques produced by heavy-metal/ferromagnet and topological-insulator/ferromagnet bilayers provide the potential for dramatically-improved efficiency in the manipulation of magnetic devices. However, in experiments performed to date, spin-orbit torques have an important limitation -- the component of torque that can compensate magnetic damping is required by symmetry to lie within the device plane. This means that spin-orbit torques can drive the most current-efficient type of magnetic reversal (antidamping switching) only for magnetic devices with in-plane anisotropy, not the devices with perpendicular magnetic anisotropy that are needed for high-density applications. Here we show experimentally that this state of affairs is not fundamental, but rather one can change the allowed symmetries of spin-orbit torques in spin-source/ferromagnet bilayer devices by using a spin source material with low crystalline symmetry. We use WTe2, a transition-metal dichalcogenide whose surface crystal structure has only one mirror plane and no two-fold rotational invariance. Consistent with these symmetries, we generate an out-of-plane antidamping torque when current is applied along a low-symmetry axis of WTe2/Permalloy bilayers, but not when current is applied along a high-symmetry axis. Controlling S-O torques by crystal symmetries in multilayer samples provides a new strategy for optimizing future magnetic technologies.



rate research

Read More

The electronic and optoelectronic properties of two dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current induced spin current and spin-orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS$_2$ or WSe$_2$)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials.
Spin-orbit torque (SOT) driven deterministic control of the magnetization state of a magnet with perpendicular magnetic anisotropy (PMA) is key to next generation spintronic applications including non-volatile, ultrafast, and energy efficient data storage devices. But, field-free deterministic switching of perpendicular magnetization remains a challenge because it requires an out-of-plane anti-damping torque, which is not allowed in conventional spin source materials such as heavy metals (HM) and topological insulators due to the systems symmetry. The exploitation of low-crystal symmetries in emergent quantum materials offers a unique approach to achieve SOTs with unconventional forms. Here, we report the first experimental realization of field-free deterministic magnetic switching of a perpendicularly polarized van der Waals (vdW) magnet employing an out-of-plane anti-damping SOT generated in layered WTe2 which is a low-crystal symmetry quantum material. The numerical simulations confirm that out-of-plane antidamping torque in WTe2 is responsible for the observed magnetization switching in the perpendicular direction.
We study current-induced torques in WTe2/permalloy bilayers as a function of WTe2 thickness. We measure the torques using both second-harmonic Hall and spin-torque ferromagnetic resonance measurements for samples with WTe2 thicknesses that span from 16 nm down to a single monolayer. We confirm the existence of an out-of-plane antidamping torque, and show directly that the sign of this torque component is reversed across a monolayer step in the WTe2. The magnitude of the out-of-plane antidamping torque depends only weakly on WTe2 thickness, such that even a single-monolayer WTe2 device provides a strong torque that is comparable to much thicker samples. In contrast, the out-of-plane field-like torque has a significant dependence on the WTe2 thickness. We demonstrate that this field-like component originates predominantly from the Oersted field, thereby correcting a previous inference drawn by our group based on a more limited set of samples.
We report on the temperature and layer thickness variation of spin-orbit torques in perpendicularly magnetized W/CoFeB bilayers. Harmonic Hall voltage measurements reveal dissimilar temperature evolutions of longitudinal and transverse effective magnetic field components. The transverse effective field changes sign at 250 K for a 2 nm thick W buffer layer, indicating a much stronger contribution from interface spin-orbit interactions compared to, for example, Ta. Transmission electron microscopy measurements reveal that considerable interface mixing between W and CoFeB is primarily responsible for this effect.
Recently discovered relativistic spin torques induced by a lateral current at a ferromagnet/paramagnet interface are a candidate spintronic technology for a new generation of electrically-controlled magnetic memory devices. Phenomenologically, the torques have field-like and antidamping-like components with distinct symmetries. Microscopically, they are considered to have two possible origins. In one picture, a spin-current generated in the paramagnet via the relativistic spin Hall effect (SHE) is absorbed in the ferromagnet and induces the spin transfer torque (STT). In the other picture, a non-equilibrium spin-density is generated via the relativistic inverse spin galvanic effect (ISGE) and induces the spin-orbit torque (SOT) in the ferromagnet. From the early observations in paramagnetic semiconductors, SHE and ISGE are known as companion phenomena that can both allow for electrically aligning spins in the same structure. It is essential for our basic physical understanding of the spin torques at the ferromagnet/paramagnet interface to experimentally disentangle the SHE and ISGE contributions. To achieve this we prepared an epitaxial transition-metal-ferromagnet/semiconductor-paramagnet single-crystal structure and performed a room-temperature vector analysis of the relativistic spin torques by means of the all-electrical ferromagnetic resonance (FMR) technique. By design, the field-like torque is governed by the ISGE-based mechanism in our structure while the antidamping-like torque is due to the SHE-based mechanism
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا