Do you want to publish a course? Click here

Rigidity of integral coisotropic submanifolds of contact manifolds

155   0   0.0 ( 0 )
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Unlike Legendrian submanifolds, the deformation problem of coisotropic submanifolds can be obstructed. Starting from this observation, we single out in the contact setting the special class of integral coisotropic submanifolds as the direct generalization of Legendrian submanifolds for what concerns deformation and moduli theory. Indeed, being integral coisotropic is proved to be a rigid condition, and moreover the integral coisotropic deformation problem is unobstructed with discrete moduli space.



rate research

Read More

In this thesis, we study the deformation problem of coisotropic submanifolds in Jacobi manifolds. In particular we attach two algebraic invariants to any coisotropic submanifold $S$ in a Jacobi manifold, namely the $L_infty[1]$-algebra and the BFV-complex of $S$. Our construction generalizes and unifies analogous constructions in symplectic, Poisson, and locally conformal symplectic geometry. As a new special case we also attach an $L_infty[1]$-algebra and a BFV-complex to any coisotropic submanifold in a contact manifold. The $L_infty[1]$-algebra of $S$ controls the formal coisotropic deformation problem of $S$, even under Hamiltonian equivalence. The BFV-complex of $S$ controls the non-formal coisotropic deformation problem of $S$, even under both Hamiltonian and Jacobi equivalence. In view of these results, we exhibit, in the contact setting, two examples of coisotropic submanifolds whose coisotropic deformation problem is obstructed.
166 - Vicente Mu~noz 2020
We develop the Gompf fiber connected sum operation for symplectic orbifolds. We use it to construct a symplectic 4-orbifold with $b_1=0$ and containing symplectic surfaces of genus 1 and 2 that are disjoint and span the rational homology. This is used in turn to construct a K-contact Smale-Barden manifold with specified 2-homology that satisfies the known topological constraints with sharper estimates than the examples constructed previously. The manifold can be chosen spin or non-spin.
128 - Amine Hadjar , Paola Piu 2015
We show that $phi$-invariant submanifolds of metric contact pairs with orthogonal characteristic foliations make constant angles with the Reeb vector fields. Our main result is that for the normal case such submanifolds of dimension at least $2$ are all minimal. We prove that an odd-dimensional $phi$-invariant submanifold of a metric contact pair with orthogonal characteristic foliations inherits a contact form with an almost contact metric structure, and this induced structure is contact metric if and only if the submanifold is tangent to one Reeb vector field and orthogonal to the other one. Furthermore we show that the leaves of the two characteristic foliations of the differentials of the contact pair are minimal. We also prove that when one Reeb vector field is Killing and spans one characteristic foliation, the metric contact pair is a product of a contact metric manifold with $mathbb{R}$.
231 - Yuxin Dong , Ye-Lin Ou 2015
In this paper, we derived biharmonic equations for pseudo-Riemannian submanifolds of pseudo-Riemannian manifolds which includes the biharmonic equations for submanifolds of Riemannian manifolds as a special case. As applications, we proved that a pseudo-umbilical biharmonic pseudo-Riemannian submanifold of a pseudo-Riemannian manifold has constant mean curvature, we completed the classifications of biharmonic pseudo-Riemannian hypersurfaces with at most two distinct principal curvatures, which were used to give four construction methods to produce proper biharmonic pseudo-Riemannian submanifolds from minimal submanifolds. We also made some comparison study between biharmonic hypersurfaces of Riemannian space forms and the space-like biharmonic hypersurfaces of pseudo-Riemannian space forms.
For a Poisson manifold $M$ we develop systematic methods to compute its Picard group $Pic(M)$, i.e., its group of self Morita equivalences. We establish a precise relationship between $Pic(M)$ and the group of gauge transformations up to Poisson diffeomorphisms showing, in particular, that their connected components of the identity coincide; this allows us to introduce the Picard Lie algebra of $M$ and to study its basic properties. Our methods lead, in particular, to the proof of a conjecture from [BW04] stating that for any compact simple Lie algebra $mathfrak{g}$ the group $Pic(mathfrak{g}^*)$ concides with the group of outer automorphisms of $mathfrak{g}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا