Do you want to publish a course? Click here

Local noise in a diffusive conductor

136   0   0.0 ( 0 )
 Added by Vadim S. Khrapai
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive and extends primary local measurements towards strongly non-equilibrium regimes.



rate research

Read More

99 - B. Reulet , D.E. Prober 2005
The current noise density S of a conductor in equilibrium, the Johnson noise, is determined by its temperature T: S=4kTG with G the conductance. The samples noise temperature Tn=S/(4kG) generalizes T for a system out of equilibrium. We introduce the noise thermal impedance of a sample as the amplitude of the oscillation of Tn when heated by an oscillating power. For a macroscopic sample, it is the usual thermal impedance. We show for a diffusive wire how this (complex) frequency-dependent quantity gives access to the electron-phonon interaction time in a long wire and to the diffusion time in a shorter one, and how its real part may also give access to the electron-electron inelastic time. These times are not simply accessible from the frequency dependence of S itself.
We present a quantum calculation based on scattering theory of the frequency dependent noise of current in an interacting chaotic cavity. We include interactions of the electron system via long range Coulomb forces between the conductor and a gate with capacitance $C$. We obtain explicit results exhibiting the two time scales of the problem, the cavitys dwell time $tau_D$ and the $RC$-time $tau_C$ of the cavity {em vis `a vis} the gate. The noise shows peculiarities at frequencies of the order and exceeding the inverse charge relaxation time $tau^{-1} = tau^{-1}_D+tau^{-1}_C $.
We consider the Johnson noise of a two-dimensional, two-terminal electrical conductor for which the electron system obeys the Wiedemann-Franz law. We derive two simple and generic relations between the Johnson Noise temperature and the heat flux into the electron system. First, we consider the case where the electron system is heated by Joule heating from a DC current, and we show that there is a universal proportionality coefficient between the Joule power and the increase in Johnson noise temperature. Second, we consider the case where heat flows into the sample from an external source, and we derive a simple relation between the Johnson noise temperature and the heat flux across the boundary of the sample.
We present measurements of current noise and cross-correlations in three-terminal Superconductor-Normal metal-Superconductor (S-N-S) nanostructures that are potential solid-state entanglers thanks to Andreev reflections at the N-S interfaces. The noise correlation measurements spanned from the regime where electron-electron interactions are relevant to the regime of Incoherent Multiple Andreev Reflection (IMAR). In the latter regime, negative cross-correlations are observed in samples with closely-spaced junctions.
As is well known, the fluctuations from a stable stationary nonequilibrium state are described by a linearized nonhomogeneous Boltzmann-Langevin equation. The stationary state itself may be described by a nonlinear Boltzmann equation. The ways of its linearization sometimes seem to be not unique. We argue that there is actually a unique way to obtain a linear equation for the fluctuations. In the present paper we treat as an example an analytical theory of nonequilibrium shot noise in a diffusive conductor under the space charge limited regime. Our approach is compared with that of Schomerus, Mishchenko and Beenakker [Phys. Rev. B 60, 5839 (1999)]. We find some difference between the present theory and the approach of their paper and discuss a possible origin of the difference. We believe that it is related to the fundamentals of the theory of fluctuation phenomena in a nonequilibrium electron gas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا