Do you want to publish a course? Click here

Pleomorphic structural imperfections caused by pulsed Bi-implantation in the bulk and thin-film morphologies of TiO2

90   0   0.0 ( 0 )
 Added by Danil Boukhvalov W
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The results of combined experimental and theoretical study of substitutional and clustering effects in Bi-doped TiO2 hosts (bulk and thin-film morphologies) are presented. Bi-doping of the bulk and thin-film titanium dioxide was made with help of pulsed ion-implantation (E(Bi+) = 30 keV, D = 1 * 1017 cm-2) without posterior tempering. The X-ray photoelectron spectroscopy (XPS) qualification (core-levels and valence bands) and Density-Functional Theory (DFT) calculations were employed in order to study the electronic structure of Bi-ion implanted TiO2 samples. According to XPS data obtained and DFT calculations, the Bi -> Ti cation substitution occurs in Bi-implanted bulk TiO2, whereas in the thin-film morphology of TiO2:Bi the Bi-atoms have metal-like clusters segregation tendency. Based on the combined XPS and DFT considerations the possible reasons and mechanism for the observed effects are discussed. It is believed that established peculiarities of bismuth embedding into employed TiO2 hosts are mostly the sequence of pleomorphic origin for the formed bismuth-oxygen chemical bonding.



rate research

Read More

X-ray photoelectron spectroscopy (XPS) and resonant x-ray emission spectroscopy (RXES) measurements of pellet and thin film forms of TiO$_2$ with implanted Fe ions are presented and discussed. The findings indicate that Fe-implantation in a TiO$_2$ pellet sample induces heterovalent cation substitution (Fe$^{2+}rightarrow$ Ti$^{4+}$) beneath the surface region. But in thin film samples, the clustering of Fe atoms is primarily detected. In addition to this, significant amounts of secondary phases of Fe$^{3+}$ are detected on the surface of all doped samples due to oxygen exposure. These experimental findings are compared with density functional theory (DFT) calculations of formation energies for different configurations of structural defects in the implanted TiO$_2$:Fe system. According to our calculations, the clustering of Fe-atoms in TiO$_2$:Fe thin films can be attributed to the formation of combined substitutional and interstitial defects. Further, the differences due to Fe doping in pellet and thin film samples can ultimately be attributed to different surface to volume ratios.
129 - B. Vishal , H. Sharona , U. Bhat 2018
We present results on growth of large area epitaxial ReS2 thin film both on c plane sapphire substrate and MoS2 template by pulsed laser deposition (PLD). Films tend to grow with (0001) ReS2 perpendicular to (0001) Al2O3 and (0001) ReS2 perpendicular to (0001) MoS2 parallel to (0001) Al2O3 at deposition temperature below 300 deg C. Films are polycrystalline grown at temperature above 300 deg C. The smoothness and quality of the films are significantly improved when grown on MoS2 template compared to sapphire substrate. The results show that PLD is suitable to grow ReS2 epitaxial thin film over large area for practical device application.
Transparent pure and Cu-doped (2.5, 5 and 10 at. %) anatase TiO2 thin films were grown by pulsed laser deposition technique on LaAlO3 substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The magnetic properties were measured using a SQUID. All films have a FM-like behaviour. In the case of the Cu-doped samples, the magnetic cycles are almost independent of the Cu concentration. Cu atoms are forming CuO and/or substituting Ti in TiO2. The thermal treatment in air promotes the CuO segregation. Since CuO is antiferromagnetic, the magnetic signals present in the films could be assigned to this Cu substitutionally replacing cations in TiO2.
Magnetic resonance spectra of EuTiO3 in both bulk and thin film form were taken at temperatures from 3-350 K and microwave frequencies from 9.2-9.8 and 34 GHz. In the paramagnetic phase, magnetic resonance spectra are determined by magnetic dipole and exchange interactions between Eu2+ spins. In the film, a large contribution arises from the demagnetization field. From detailed analysis of the linewidth and its temperature dependence, the parameters of spin-spin interactions were determined: the exchange frequency is 15-15.5 GHz and the estimated critical exponent of the spin correlation length is ~ 0.5. In the bulk samples, the spectra exhibited a distinct minimum in the linewidth at the Neel temperature, T_N = 5.5 K, while the resonance field practically does not change even on cooling below T_N. This is indicative of a small magnetic anisotropy ~ 320 G in the antiferromagnetic phase. In the film, the magnetic resonance spectrum is split below T_N into several components due to excitation of the magnetostatic modes, corresponding to a non-uniform precession of magnetization. Moreover, the film was observed to degrade over two years. This was manifested by an increase of defects and a change in the domain structure. The saturated magnetization in the film, estimated from the magnetic resonance spectrum, was about 900 emu/cm3 or 5.5 mu_B/unit cell at T = 3.5 K.
We present a comprehensive study of the crystal structure of the thin-film, ferromagnetic topological insulator (Bi, Sb)$_{2-x}$V$_x$Te$_3$. The dissipationless quantum anomalous Hall edge states it manifests are of particular interest for spintronics, as a natural spin filter or pure spin source, and as qubits for topological quantum computing. For ranges typically used in experiments, we investigate the effect of doping, substrate choice and film thickness on the (Bi, Sb)$_2$Te$_3$ unit cell using high-resolution X-ray diffractometry. Scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements provide local structural and interfacial information. We find that the unit cell is unaffected in-plane by vanadium doping changes, and remains unchanged over a thickness range of 4--10 quintuple layers (1 QL $approx$ 1 nm). The in-plane lattice parameter ($a$) also remains the same in films grown on different substrate materials. However, out-of-plane the $c$-axis is reduced in films grown on less closely lattice-matched substrates, and increases with the doping level.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا