Do you want to publish a course? Click here

Reply to Comment [axXiv:1610.07734] by L. Vaidman on Particle path through a nested Mach-Zehnder interferometer [R. B. Griffiths, Phys. Rev. A 94 (2016) 032115]

193   0   0.0 ( 0 )
 Added by Robert B. Griffiths
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The correctness of the consistent histories analysis of weakly interacting probes, related to the path of a particle, is maintained against the criticisms in the Comment, and against the alternative approach described there, which receives no support from standard (textbook) quantum mechanics.



rate research

Read More

145 - Robert B. Griffiths 2017
While much of the technical analysis in the preceding Comment [1] is correct, in the end it confirms the conclusion reached in my previous work [2]: a consistent histories analysis provides no support for the claim of counterfactual quantum communication put forward in [3]
129 - Hatim Salih 2016
In a recent paper, arXiv:1604.04596, Griffiths questioned - based on an informative consistent-histories (CH) argument - the counterfactuality, for one of the bit choices, of Salih et al.s protocol for communicating without sending physical particles, Phys. Rev. Lett. 110, 170502 (2013). Here, we first show that for the Mach-Zehnder version used to explain our protocol, no family of consistent histories exists where any history has the photon travelling through the communication channel, thus rendering the question of whether the photon was in the communication channel meaningless from a CH viewpoint. We then show that for the actual Michelson-type protocol, there are consistent-histories families that include histories where the photon travels through the communication channel. We show that the probability of finding the photon in the communication channel is zero - thus proving complete counterfactuality.
310 - Robert B. Griffiths 2016
Possible paths of a photon passing through a nested Mach-Zehnder interferometer on its way to a detector are analyzed using the consistent histories formulation of quantum mechanics, and confirmed using a set of weak measurements (but not weak values). The results disagree with an analysis by Vaidman [ Phys. Rev. A 87 (2013) 052104 ], and agree with a conclusion reached by Li et al. [ Phys. Rev. A 88 (2013) 046102 ]. However, the analysis casts serious doubt on the claim of Salih et al. (whose authorship includes Li et al.) [ Phys. Rev. Lett. 110 (2013) 170502 ] to have constructed a protocol for counterfactual communication: a channel which can transmit information even though it contains a negligible number of photons.
In this paper, we present a coherent state-vector method which can explain the results of a nested linear Mach-Zehnder Interferometric experiment. Such interferometers are used widely in Quantum Information and Quantum Optics experiments and also in designing quantum circuits. We have specifically considered the case of an experiment by Danan emph{et al.} (Phys. Rev. Lett. textbf{111}, 240402 (2013)) where the outcome of the experiment was spooky by our intuitive guesses. However we have been able to show by our method that the results of this experiment is indeed expected within the standard formalism of Quantum Mechanics using any classical state of a single-mode radiation field as the input into the nested interferometric set-up of the aforesaid experiment and thereby looking into the power spectrum of the output beam.
154 - Egor Babaev , Mihail Silaev 2011
The recent paper by V. G. Kogan and J. Schmalian Phys. Rev. B 83, 054515 (2011) argues that the widely used two-component Ginzburg-Landau (GL) models are not correct, and further concludes that in the regime which is described by a GL theory there could be no disparity in the coherence lengths of two superconducting components. This would in particular imply that (in contrast to $U(1)times U(1)$ superconductors), there could be no type-1.5 superconducting regime in U(1) multiband systems for any finite interband coupling strength. We point out that these claims are incorrect and based on an erroneous scheme of reduction of a two-component GL theory. We also attach a separate rejoinder on reply by Kogan and Schmalian. In their reply Phys. Rev. B 86, 016502 (2012) to our comment Phys. Rev. B 86, 016501 (2012) Kogan and Schmalian did not refute or, indeed, discuss the main points of criticism in the comment. Unfortunately they instead advance new incorrect claims regarding two-band and type-1.5 superconductivity. The main purpose of the attached rejoinder is to discuss these new incorrect claims.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا