Do you want to publish a course? Click here

Shot noise generated by graphene p-n junctions in the quantum Hall effect regime

238   0   0.0 ( 0 )
 Added by Norio Kumada
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Owing to a linear and gapless band structure and a tunability of the charge carrier type, graphene offers a unique system to investigate transport of Dirac Fermions at p-n junctions (PNJs). In a magnetic field, combination of quantum Hall physics and the characteristic transport across PNJs leads to a fractionally quantized conductance associated with the mixing of electron-like and hole-like modes and their subsequent partitioning. The mixing and partitioning suggest that a PNJ could be used as an electronic beam-splitter. Here we report the shot noise study of the mode mixing process and demonstrate the crucial role of the PNJ length. For short PNJs, the amplitude of the noise is consistent with an electronic beam-splitter behavior, whereas, for longer PNJs, it is reduced by the energy relaxation. Remarkably, the relaxation length is much larger than typical size of mesoscopic devices, encouraging using graphene for electron quantum optics and quantum information processing.



rate research

Read More

Using high quality graphene pnp junctions, we observe prominent conductance fluctuations on transitions between quantum Hall (QH) plateaus as the top gate voltage Vtg is varied. In the Vtg-B plane, the fluctuations form crisscrossing lines that are parallel to those of the adjacent plateaus, with different temperature dependences for the conductance peaks and valleys. These fluctuations arise from Coulomb-induced charging of electron- or hole-doped localized states when the device bulk is delocalized, underscoring the importance of electronic interactions in graphene in the QH regime.
We report on the fabrication and transport studies of a single-layer graphene p-n junction. Carrier type and density in two adjacent regions are individually controlled by electrostatic gating using a local top gate and a global back gate. A functionalized Al203 oxide that adheres to graphene and does not significantly affect its electronic properties is described. Measurements in the quantum Hall regime reveal new plateaus of two-terminal conductance across the junction at 1 and 3/2 times the quantum of conductance, e2/h, consistent with theory.
We developed a multi-level lithography process to fabricate graphene p-n-p junctions with the novel geometry of contactless, suspended top gates. This fabrication procedure minimizes damage or doping to the single atomic layer, which is only exposed to conventional resists and developers. The process does not require special equipment for depositing gate dielectrics or releasing sacrificial layers, and is compatible with annealing procedures that improve device mobility. Using this technique, we fabricate graphene devices with suspended local top gates, where the creation of high quality graphene p-n-p junctions is confirmed by transport data at zero and high magnetic fields.
Electron pairing is a rare phenomenon appearing only in a few unique physical systems; e.g., superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected, but robust, electron pairing in the integer quantum Hall effect (IQHE) regime. The pairing takes place within an interfering edge channel circulating in an electronic Fabry-Perot interferometer at a wide range of bulk filling factors, $2<{ u} _B<5$. The main observations are: (a) High visibility Aharonov-Bohm conductance oscillations with magnetic flux periodicity ${Delta}{phi}={varphi}_0/2=h/2e$ (instead of the ubiquitous $h/e$), with $e$ the electron charge and $h$ the Planck constant; (b) An interfering quasiparticle charge $e ^* {sim} 2e$ - revealed by quantum shot noise measurements; and (c) Full dephasing of the $h/2e$ periodicity by induced dephasing of the adjacent edge channel (while keeping the interfering edge channel intact) : a clear realization of inter-channel entanglement. While this pairing phenomenon clearly results from inter-channel interaction, the exact mechanism that leads to e-e attraction within a single edge channel is not clear.
We have investigated the cross-over from Zener tunneling of single charge carriers to avalanche type of bunched electron transport in a suspended graphene Corbino disk in the zeroth Landau level. At low bias, we find a tunneling current that follows the gyrotropic Zener tunneling behavior. At larger bias, we find avalanche type of transport that sets in at a smaller current the larger the magnetic field is. The low-frequency noise indicates strong bunching of the electrons in the avalanches. On the basis of the measured low-frequency switching noise power, we deduce the characteristic switching rates of the avalanche sequence. The simultaneous microwave shot noise measurement also reveals intrinsic correlations within the avalanche pulses and indicate decrease of correlations with increasing bias.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا