No Arabic abstract
The AUV three-dimension path planning in complex turbulent underwater environment is investigated in this research, in which static current map data and uncertain static-moving time variant obstacles are taken into account. Robustness of AUVs path planning to this strong variability is known as a complex NP-hard problem and is considered a critical issue to ensure vehicles safe deployment. Efficient evolutionary techniques have substantial potential of handling NP hard complexity of path planning problem as more powerful and fast algorithms among other approaches for mentioned problem. For the purpose of this research Differential Evolution (DE) technique is conducted to solve the AUV path planning problem in a realistic underwater environment. The path planners designed in this paper are capable of extracting feasible areas of a real map to determine the allowed spaces for deployment, where coastal area, islands, static/dynamic obstacles and ocean current is taken into account and provides the efficient path with a small computation time. The results obtained from analyze of experimental demonstrate the inherent robustness and drastic efficiency of the proposed scheme in enhancement of the vehicles path planning capability in coping undesired current, using useful current flow, and avoid colliding collision boundaries in a real-time manner. The proposed approach is also flexible and strictly respects to vehicles kinematic constraints resisting current instabilities.
This paper presents a solution to Autonomous Underwater Vehicles (AUVs) large scale route planning and task assignment joint problem. Given a set of constraints (e.g., time) and a set of task priority values, the goal is to find the optimal route for underwater mission that maximizes the sum of the priorities and minimizes the total risk percentage while meeting the given constraints. Making use of the heuristic nature of genetic and swarm intelligence algorithms in solving NP-hard graph problems, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are employed to find the optimum solution, where each individual in the population is a candidate solution (route). To evaluate the robustness of the proposed methods, the performance of the all PS and GA algorithms are examined and compared for a number of Monte Carlo runs. Simulation results suggest that the routes generated by both algorithms are feasible and reliable enough, and applicable for underwater motion planning. However, the GA-based route planner produces superior results comparing to the results obtained from the PSO based route planner.
Providing a higher level of decision autonomy and accompanying prompt changes of an uncertain environment is a true challenge of AUVs autonomous operations. The proceeding approach introduces a robust reactive structure that accommodates an AUVs mission planning, task-time management in a top level and incorporates environmental changes by a synchronic motion planning in a lower level. The proposed architecture is developed in a hierarchal modular format and a bunch of evolutionary algorithms are employed by each module to investigate the efficiency and robustness of the structure in different mission scenarios while water current data, uncertain static-mobile/motile obstacles, and vehicles Kino-dynamic constraints are taken into account. The motion planner is facilitated with online re-planning capability to refine the vehicles trajectory based on local variations of the environment. A small computational load is devoted for re-planning procedure since the upper layer mission planner renders an efficient overview of the operation area that AUV should fly thru. Numerical simulations are carried out to investigate robustness and performance of the architecture in different situations of a real-world underwater environment. Analysis of the simulation results claims the remarkable capability of the proposed model in accurate mission task-time-threat management while guarantying a secure deployment during the mission.
Autonomous Underwater Vehicle-Manipulator systems (AUVMS) is a new tool for ocean exploration, the AUVMS path planning problem is addressed in this paper. AUVMS is a high dimension system with a large difference in inertia distribution, also it works in a complex environment with obstacles. By integrating the rapidly-exploring random tree(RRT) algorithm with the AUVMS kinematics model, the proposed RRTAUVMS algorithm could randomly sample in the configuration space(C-Space), and also grow the tree directly towards the workspace goal in the task space. The RRTAUVMS can also deal with the redundant mapping of workspace planning goal and configuration space goal. Compared with the traditional RRT algorithm, the efficiency of the AUVMS path planning can be significantly improved.
Estimating ocean flow fields in 3D is a critical step in enabling the reliable operation of underwater gliders and other small, low-powered autonomous marine vehicles. Existing methods produce depth-averaged 2D layers arranged at discrete vertical intervals, but this type of estimation can lead to severe navigation errors. Based on the observation that real-world ocean currents exhibit relatively low velocity vertical components, we propose an accurate 3D estimator that extends our previous work in estimating 2D flow fields as a linear combination of basis flows. The proposed algorithm uses data from ensemble forecasting to build a set of 3D basis flows, and then iteratively updates basis coefficients using point measurements of underwater currents. We report results from experiments using actual ensemble forecasts and synthetic measurements to compare the performance of our method to the direct 3D extension of the previous work. These results show that our method produces estimates with dramatically lower error metrics, with and without measurement noise.
Rapidly-exploring Random Tree Star(RRT*) is a recently proposed extension of Rapidly-exploring Random Tree (RRT) algorithm that provides a collision-free, asymptotically optimal path regardless of obstacles geometry in a given environment. However, one of the limitations in the RRT* algorithm is slow convergence to optimal path solution. As a result, it consumes high memory as well as time due to a large number of iterations utilised in achieving optimal path solution. To overcome these limitations, we propose the Potential Function Based-RRT* (P-RRT*) that incorporates the Artificial Potential Field Algorithm in RRT*. The proposed algorithm allows a considerable decrease in the number of iterations and thus leads to more efficient memory utilization and an accelerated convergence rate. In order to illustrate the usefulness of the proposed algorithm in terms of space execution and convergence rate, this paper presents rigorous simulation based comparisons between the proposed techniques and RRT* under different environmental conditions. Moreover, both algorithms are also tested and compared under non-holonomic differential constraints.