We study Schroedinger operators with Robin boundary conditions on exterior domains in $R^d$. We prove sharp point-wise estimates for the associated semi-groups which show, in particular, how the boundary conditions affect the time decay of the heat kernel in dimensions one and two. Applications to spectral estimates are discussed as well.
We study the eigenvalues of the Laplacian with a strong attractive Robin boundary condition in curvilinear polygons. It was known from previous works that the asymptotics of several first eigenvalues is essentially determined by the corner openings, while only rough estimates were available for the next eigenvalues. Under some geometric assumptions, we go beyond the critical eigenvalue number and give a precise asymptotics of any individual eigenvalue by establishing a link with an effective Schrodinger-type operator on the boundary of the domain with boundary conditions at the corners.
We consider Schroedinger operators on regular metric trees and prove Lieb-Thirring and Cwikel-Lieb-Rozenblum inequalities for their negative eigenvalues. The validity of these inequalities depends on the volume growth of the tree. We show that the bounds are valid in the endpoint case and reflect the correct order in the weak or strong coupling limit.
We discuss several geometric conditions guaranteeing the finiteness or the infiniteness of the discrete spectrum for Robin Laplacians on conical domains.
We investigate the dependence of the $L^1to L^infty$ dispersive estimates for one-dimensional radial Schro-din-ger operators on boundary conditions at $0$. In contrast to the case of additive perturbations, we show that the change of a boundary condition at zero results in the change of the dispersive decay estimates if the angular momentum is positive, $lin (0,1/2)$. However, for nonpositive angular momenta, $lin (-1/2,0]$, the standard $O(|t|^{-1/2})$ decay remains true for all self-adjoint realizations.
In this paper the spectral and scattering properties of a family of self-adjoint Dirac operators in $L^2(Omega; mathbb{C}^4)$, where $Omega subset mathbb{R}^3$ is either a bounded or an unbounded domain with a compact $C^2$-smooth boundary, are studied in a systematic way. These operators can be viewed as the natural relativistic counterpart of Laplacians with Robin boundary conditions. Among the Dirac operators treated here is also the so-called MIT bag operator, which has been used by physicists and more recently was discussed in the mathematical literature. Our approach is based on abstract boundary triple techniques from extension theory of symmetric operators and a thorough study of certain classes of (boundary) integral operators, that appear in a Krein-type resolvent formula. The analysis of the perturbation term in this formula leads to a description of the spectrum and a Birman-Schwinger principle, a qualitative understanding of the scattering properties in the case that $Omega$ is unbounded, and corresponding trace formulas.