Do you want to publish a course? Click here

A Time Projection Chamber with GEM-Based Readout

500   0   0.0 ( 0 )
 Added by Ralf Diener
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent GEM-based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.



rate research

Read More

In this paper we present the R&D activity on a new GEM-based TPC prototype for AMADEUS, a new experimental proposal at the DA{Phi}NE {Phi}-factory at the Laboratori Nazionali di Frascati (INFN), aiming to perform measurements of the low-energy negative kaons interactions in nuclei. Such innovative detector will equip the inner part of the experiment in order to perfom a better reconstruction of the primary vertex and the secondary particles tracking. A 10x10 cm2 prototype with a drift gap up to 15 cm was realized and succesfully tested at the {pi} M1 beam facility of the Paul Scherrer Institut (PSI) with low momentum hadrons. The measurements of the detector efficiency and spatial resolution have been performed. The results as a function of the gas gain, drift field, front-end electronic threshold and particle momentum are reported and discussed.
Measurements of proton-nucleus scattering and high resolution neutrino-nucleus interaction imaging are key to reduce neutrino oscillation systematic uncertainties in future experiments. A High Pressure Time Projection Chamber (HPTPC) prototype has been constructed and operated at Royal Holloway University of London and CERN as a first step in the development of a HPTPC capable of performing these measurements as part of a future long-baseline neutrino oscillation experiment such as the Deep Underground Neutrino Experiment. In this paper we describe the design and operation of the prototype HPTPC with an argon based gas mixture. We report on the successful hybrid charge and optical readout, using four CCD cameras, of signals from Am-241 sources.
226 - M.Poli Lener , M.Bazzi , G.Corradi 2013
A large number of high-energy and heavy-ion experiments successfully used Time Projection Chamber (TPC) as central tracker and particle identification detector. However, the performance requirements on TPC for new high-rate particle experiments greatly exceed the abilities of traditional TPC read out by multi-wire proportional chamber (MWPC). Gas Electron Multiplier (GEM) detector has great potential to improve TPC performances when used as amplification device. In this paper we present the R&D activity on a new GEM-based TPC detector built as a prototype for the inner part for AMADEUS, a new experimental proposal at the DAFNE collider at Laboratori Nazionali di Frascati (INFN), aiming to perform measurements of the low-energy negative kaons interactions in nuclei. In order to evaluate the GEM-TPC performances, a 10x10 cm2 prototype with a drift gap up to 15 cm has been realized. The detector was tested at the pM1 beam facility of the Paul Scherrer Institut (PSI) with low momentum pions and protons, without magnetic field. Drift properties of argonisobutane gas mixtures are measured and compared withMagboltz prediction. Detection efficiency and spatial resolution as a function of a large number of parameters, such as the gas gain, the drift field, the front-end electronic threshold and particle momentum, are illustrated and discussed. Particle identification capability and the measurement of the energy resolution in isobutane-based gas mixture are also reported.
A micro time-projection-chamber (micro-TPC) with a detection volume of 23*28*31 cm^3 was developed, and its fundamental performance was examined. The micro-TPC consists of a micro pixel chamber with a detection area of 31*31 cm^2 as a two-dimensional imaging device and a gas electron multiplier with an effective area of 23*28 cm^2 as a pre-gas-multiplier. The micro-TPC was operated at a gas gain of 50,000, and energy resolutions and spatial resolutions were measured.
The aim of the CYGNO project is the construction and operation of a 1~m$^3$ gas TPC for directional dark matter searches and coherent neutrino scattering measurements, as a prototype toward the 100-1000~m$^3$ (0.15-1.5 tons) CYGNUS network of underground experiments. In such a TPC, electrons produced by dark-matter- or neutrino-induced nuclear recoils will drift toward and will be multiplied by a three-layer GEM structure, and the light produced in the avalanche processes will be readout by a sCMOS camera, providing a 2D image of the event with a resolution of a few hundred micrometers. Photomultipliers will also provide a simultaneous fast readout of the time profile of the light production, giving information about the third coordinate and hence allowing a 3D reconstruction of the event, from which the direction of the nuclear recoil and consequently the direction of the incoming particle can be inferred. Such a detailed reconstruction of the event topology will also allow a pure and efficient signal to background discrimination. These two features are the key to reach and overcome the solar neutrino background that will ultimately limit non-directional dark matter searches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا