Do you want to publish a course? Click here

A 1 m$^3$ Gas Time Projection Chamber with Optical Readout for Directional Dark Matter Searches: the CYGNO Experiment

80   0   0.0 ( 0 )
 Added by Francesco Renga
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aim of the CYGNO project is the construction and operation of a 1~m$^3$ gas TPC for directional dark matter searches and coherent neutrino scattering measurements, as a prototype toward the 100-1000~m$^3$ (0.15-1.5 tons) CYGNUS network of underground experiments. In such a TPC, electrons produced by dark-matter- or neutrino-induced nuclear recoils will drift toward and will be multiplied by a three-layer GEM structure, and the light produced in the avalanche processes will be readout by a sCMOS camera, providing a 2D image of the event with a resolution of a few hundred micrometers. Photomultipliers will also provide a simultaneous fast readout of the time profile of the light production, giving information about the third coordinate and hence allowing a 3D reconstruction of the event, from which the direction of the nuclear recoil and consequently the direction of the incoming particle can be inferred. Such a detailed reconstruction of the event topology will also allow a pure and efficient signal to background discrimination. These two features are the key to reach and overcome the solar neutrino background that will ultimately limit non-directional dark matter searches.



rate research

Read More

The design of the project named CYGNO is presented. CYGNO is a new proposal supported by INFN, the Italian National Institute for Nuclear Physics, within CYGNUs proto-collaboration (CYGNUS-TPC) that aims to realize a distributed observatory in underground laboratories for directional Dark Matter (DM) search and the identification of the coherent neutrino scattering (CNS) from the Sun. CYGNO is one of the first prototypes in the road map to 100-1000 m^3 of CYGNUs and will be located at the National Laboratory of Gran Sasso (LNGS), in Italy, aiming to make significant advances in the technology of single phase gas-only time projection chambers (TPC) for the application to the detection of rare scattering events. In particular it will focus on a read-out technique based on Micro Pattern Gas Detector (MPGD) amplification of the ionization and on the visible light collection with a sub-mm position resolution sCMOS (scientific COMS) camera. This type of readout - in conjunction with a fast light detection - will allow on one hand to reconstruct 3D direction of the tracks, offering accurate sensitivity to the source directionality and, on the other hand, a high particle identification capability very useful to distinguish nuclear recoils.
CYGNO is a project realising a cubic meter demonstrator to study the scalability of the performance of the optical approach for the readout of large-volume, GEM-equipped TPC. This is part of the CYGNUS proto-collaboration which aims at constructing a network of underground observatories for directional Dark Matter search. The combined use of high-granularity sCMOS and fast sensors for reading out the light produced in GEM channels during the multiplication processes was shown to allow on one hand to reconstruct 3D direction of the tracks, offering accurate energy measurements and sensitivity to the source directionality and, on the other hand, a high particle identification capability very useful to distinguish nuclear recoils. Results of the performed R&D and future steps toward a 30-100 cubic meter experiment will be presented.
The CYGNO project has the goal to use a gaseous TPC with optical readout to detect dark matter and solar neutrinos with low energy threshold and directionality. The CYGNO demonstrator will consist of 1 m 3 volume filled with He:CF 4 gas mixture at atmospheric pressure. Optical readout with high granularity CMOS sensors, combined with fast light detectors, will provide a detailed reconstruction of the event topology. This will allow to discriminate the nuclear recoil signal from the background, mainly represented by low energy electron recoils induced by radioactivity. Thanks to the high reconstruction efficiency, CYGNO will be sensitive to low mass dark matter, and will have the potential to overcome the neutrino floor, that ultimately limits non-directional dark matter searches.
Measurements of proton-nucleus scattering and high resolution neutrino-nucleus interaction imaging are key to reduce neutrino oscillation systematic uncertainties in future experiments. A High Pressure Time Projection Chamber (HPTPC) prototype has been constructed and operated at Royal Holloway University of London and CERN as a first step in the development of a HPTPC capable of performing these measurements as part of a future long-baseline neutrino oscillation experiment such as the Deep Underground Neutrino Experiment. In this paper we describe the design and operation of the prototype HPTPC with an argon based gas mixture. We report on the successful hybrid charge and optical readout, using four CCD cameras, of signals from Am-241 sources.
For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent GEM-based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا