Do you want to publish a course? Click here

Plasma Propulsion of a Metallic Micro-droplet and its Deformation upon Laser Impact

78   0   0.0 ( 0 )
 Added by Oscar Versolato
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The propulsion of a liquid indium-tin micro-droplet by nanosecond-pulse laser impact is experimentally investigated. We capture the physics of the droplet propulsion in a scaling law that accurately describes the plasma-imparted momentum transfer, enabling the optimization of the laser-droplet coupling. The subsequent deformation of the droplet is described by an analytical model that accounts for the droplets propulsion velocity and the liquid properties. Comparing our findings to those from vaporization-accelerated mm-sized water droplets, we demonstrate that the hydrodynamic response of laser-impacted droplets is scalable and independent of the propulsion mechanism.



rate research

Read More

466 - T. V. Liseykina , D. Bauer 2012
We study the ionization dynamics in intense laser-droplet interaction using three-dimensional, relativistic particle-in-cell simulations. Of particular interest is the laser intensity and frequency regime for which initially transparent, wavelength-sized targets are not homogeneously ionized. Instead, the charge distribution changes both in space and in time on a sub-cycle scale. One may call this the extreme nonlinear Mie-optics regime. We find that - despite the fact that the plasma created at the droplet surface is overdense - oscillating electric fields may penetrate into the droplet under a certain angle, ionize, and propagate in the just generated plasma. This effect can be attributed to the local field enhancements at the droplet surface predicted by standard Mie theory. The penetration of the fields into the droplet leads to the formation of a highly inhomogeneous charge density distribution in the droplet interior, concentrated mostly in the polarization plane. We present a self-similar, exponential fit of the fractional ionization degree which depends only on a dimensionless combination of electric field amplitude, droplet radius, and plasma frequency with only a weak dependence on the laser frequency in the overdense regime.
We study deformation of a cavity around a large projectile moving with subsonic velocity in the cloud of small dust particles. To solve this problem, we employ the Navier--Stokes equation for a compressible fluid with due regard for friction between dust particles and atoms of neutral gas. The solutions shows that due to friction, the pressure of dust cloud at the boundary of the cavity behind the projectile can become negative, which entails formation of a microscopic void free from dust particles -- the cavity deformation. Corresponding threshold velocity is calculated, which is found to decrease with increasing cavity size. Measurement of such velocity makes it possible to estimate the static pressure inside the dust cloud.
Would a raindrop impacting on a coarse beach behave differently from that impacting on a desert of fine sand? We study this question by a series of model experiments, where the packing density of the granular target, the wettability of individual grains, the grain size, the impacting liquid, and the impact speed are varied. We find that by increasing the grain size and/or the wettability of individual grains the maximum droplet spreading undergoes a transition from a capillary regime towards a viscous regime, and splashing is suppressed. The liquid-grain mixing is discovered to be the underlying mechanism. An effective viscosity is defined accordingly to quantitatively explain the observations.
Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. This opens a new realm of possibilities for laser interaction with micro- and nano-scales photonic materials at the relativistic intensities. Here we demonstrate, for the first time, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls and form a dense self-organized helical bunch inside the channel. These electrons are efficiently accelerated and wiggled by the waveguide modes in the MPW, which results in a bright, well-collimated emission of hard x-rays in the range of 1~100 keV.
86 - S. Kawata , T. Karino , Y. J. Gu 2018
The paper presents a review of dynamic stabilization mechanisms for plasma instabilities. One of the dynamic stabilization mechanisms for plasma instability was proposed in the papers [Phys. Plasmas 19, 024503(2012) and references therein], based on a perturbation phase control. In general, instabilities emerge from the perturbations of the physical quantity. Normally the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superimposition of perturbations imposed actively: if the perturbation is introduced by, for example, a driving beam axis oscillation or so, the perturbation phase can be controlled and the instability growth is mitigated by the superimposition of the growing perturbations. Based on this mechanism we present the application results of the dynamic stabilization mechanism to the Rayleigh-Taylor (R-T) instability and to the filamentation instability as typical examples in this paper. On the other hand, in the paper [Comments Plasma Phys. Controlled Fusion 3, 1(1977)] another mechanism was proposed to stabilize the R-T instability based on the strong oscillation of acceleration, which was realized by the laser intensity modulation in laser inertial fusion [Phys. Rev. Lett. 71, 3131(1993)]. In the latter mechanism, the total acceleration strongly oscillates, so that the additional oscillating force is added to create a new stable window in the system. Originally the latter mechanism was proposed by P. L. Kapitza, and it was applied to the stabilization of an inverted pendulum. In this paper we review the two dynamic stabilization mechanisms, and present the application results of the former dynamic stabilization mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا