Do you want to publish a course? Click here

Electron Diffraction by Plasmon Waves

83   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

An electron beam traversing a structured plasmonic field is shown to undergo diffraction with characteristic angular patterns of both elastic and inelastic outgoing electron components. In particular, a plasmonic {it grating} (e.g., a standing wave formed by two counter-propagating plasmons in a thin film) produces diffraction orders of the same parity as the net number of exchanged plasmons. Large diffracted beam fractions are predicted to occur for realistic plasmon intensities in attainable geometries due to a combination of phase and amplitude changes locally imprinted on the passing electron wave. Our study opens new vistas in the study of multiphoton exchanges between electron beams and evanescent optical fields with unexplored effects related to the transversal component of the electron wave function.



rate research

Read More

Diffraction of light at lateral inhomogenities is a central process in the near-field studies of nanoscale phenomena, especially the propagation of surface waves. Theoretical description of this process is extremely challenging due to breakdown of plane-wave methods. Here, we present and analyze an exact solution for electromagnetic wave diffraction at the linear junction between two-dimensional electron systems (2DES) with dissimilar surface conductivities. The field at the junction is a combination of three components with different spatial structure: free-field component, non-resonant edge component, and surface plasmon-polariton (SPP). We find closed-form expressions for efficiency of photon-to-plasmon conversion by the edge being the ratio of electric fields in SPP and incident wave. Particularly, the conversion efficiency can considerably exceed unity for the contact between metal and 2DES with large impedance. Our findings can be considered as a first step toward quantitative near-field microscopy of inhomogeneous systems and polaritonic interferometry.
388 - S. Vogelgesang 2017
We introduce ultrafast low-energy electron diffraction (ULEED) in backscattering for the study of structural dynamics at surfaces. Using a tip-based source of ultrashort electron pulses, we investigate the optically-driven transition between charge-density wave phases at the surface of 1T-TaS2. The large transfer width of the instrument allows us to employ spot-profile analysis, resolving the phase-ordering kinetics in the nascent incommensurate charge-density wave phase. We observe a coarsening that follows a power-law scaling of the correlation length, driven by the annihilation of dislocation-type topological defects of the charge-ordered lattice. Our work opens up the study of a wide class of structural transitions and ordering phenomena at surfaces and in low-dimensional systems.
Surface electromagnetic modes supported by metal surfaces have a great potential for uses in miniaturised detectors and optical circuits. For many applications these modes are excited locally. In the optical regime, Surface Plasmon Polaritons (SPPs) have been thought to dominate the fields at the surface, beyond a transition region comprising 3-4 wavelengths from the source. In this work we demonstrate that at sufficiently long distances SPPs are not the main contribution to the field. Instead, for all metals, a different type of wave prevails, which we term Norton waves for their reminiscence to those found in the radio-wave regime at the surface of the Earth. Our results show that Norton Waves are stronger at the surface than SPPs at distances larger than 6-9 SPPs absorption lengths, the precise value depending on wavelength and metal. Moreover, Norton waves decay more slowly than SPPs in the direction normal to the surface.
Epitaxial graphene mesas and ribbons are investigated using terahertz (THz) nearfield microscopy to probe surface plasmon excitation and THz transmission properties on the sub-wavelength scale. The THz near-field images show variation of graphene properties on a scale smaller than the wavelength, and excitation of THz surface waves occurring at graphene edges, similar to that observed at metallic edges. The Fresnel reflection at the substrate SiC/air interface is also found to be altered by the presence of graphene ribbon arrays, leading to either reduced or enhanced transmission of the THz wave depending on the wave polarization and the ribbon width.
Surface plasmons in 2-dimensional electron systems with narrow Bloch bands feature an interesting regime in which Landau damping (dissipation via electron-hole pair excitation) is completely quenched. This surprising behavior is made possible by strong coupling in narrow-band systems characterized by large values of the fine structure constant $alpha=e^2/hbar kappa v_{rm F}$. Dissipation quenching occurs when dispersing plasmon modes rise above the particle-hole continuum, extending into the forbidden energy gap that is free from particle-hole excitations. The effect is predicted to be prominent in moire graphene, where at magic twist-angle values, flat bands feature $alphagg1$. The extinction of Landau damping enhances spatial optical coherence. Speckle-like interference, arising in the presence of disorder scattering, can serve as a telltale signature of undamped plasmons directly accessible in near-field imaging experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا