Do you want to publish a course? Click here

Individual power density spectra of Swift gamma-ray bursts

68   0   0.0 ( 0 )
 Added by Cristiano Guidorzi
 Publication date 2016
  fields Physics
and research's language is English
 Authors C. Guidorzi




Ask ChatGPT about the research

Timing analysis is a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of GRBs. Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and to investigate the dominant variability timescales. Because of the limited duration and of the statistical properties, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature. We characterise the individual PDS of GRBs in terms of a stochastic process, and carry out for the first time a systematic search for periodic signals and for a link between the PDS and other observables. We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study 215 bright long GRBs detected with the Swift Burst Alert Telescope from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Two classes of GRBs emerge: with or without a unique dominant timescale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond-dominant timescales and duration longer than a few tens of seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for a periodic signal at ~3 sigma (Gaussian) significance, corresponding to a multitrial chance probability of ~1%. Thus, we found no compelling evidence for periodic signals. The analogy between the PDS of GRBs and of AGNs could tentatively indicate similar stochastic processes that rule BH accretion across different BH mass scales and objects. In addition, we find evidence that short dominant timescales and duration are not completely independent of each other, in contrast with commonly accepted paradigms (abridged).



rate research

Read More

86 - I. Horvath , B. G. Toth 2016
Decades ago two classes of gamma-ray bursts were identified and delineated as having durations shorter and longer than about 2 s. Subsequently indications also supported the existence of a third class. Using maximum likelihood estimation we analyze the duration distribution of 888 Swift BAT bursts observed before October 2015. Fitting three log-normal functions to the duration distribution of the bursts provides a better fit than two log-normal distributions, with 99.9999% significance. Similarly to earlier results, we found that a fourth component is not needed. The relative frequencies of the distribution of the groups are 8% for short, 35% for intermediate and 57% for long bursts which correspond to our previous results. We analyse the redshift distribution for the 269 GRBs of the 888 GRBs with known redshift. We find no evidence for the previously suggested difference between the long and intermediate GRBs redshift distribution. The observed redshift distribution of the 20 short GRBs differs with high significance from the distributions of the other groups.
We present the results of sixteen Swift-triggered GRB follow-up observations taken with the VERITAS telescope array from January, 2007 to June, 2009. The median energy threshold and response time of these observations was 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter time scale determined by the maximum VERITAS sensitivity to a burst with a t^-1.5 time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope (LAT) on-board the Fermi satellite. No significant VHE gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light (EBL) and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.
The complete Swift Burst Alert Telescope and X-Ray Telescope light curves of 118 gamma-ray bursts (GRBs) with known redshifts were fitted using the physical model of GRB pulses by Willingale et al. to produce a total of 607 pulses. We compute the pulse luminosity function utilizing three GRB formation rate models: a progenitor that traces the cosmic star formation rate density (CSFRD) with either a single population of GRBs, coupled to various evolutionary parameters, or a bimodal population of high- and low-luminosity GRBs, and a direct fit to the GRB formation rate excluding any a priori assumptions. We find that a single population of GRB pulses with an evolving luminosity function is preferred over all other univariate evolving GRB models, or bimodal luminosity functions in reproducing the observed GRB pulse L-z distribution and that the magnitude of the evolution in brightness is consistent with studies that utilize only the brightest GRB pulses. We determine that the appearance of a GRB formation rate density evolution component is an artifact of poor parametrization of the CSFRD at high redshifts rather than indicating evolution in the formation rate of early epoch GRBs. We conclude that the single brightest region of a GRB light curve holds no special property, by incorporating pulse data from the totality of GRB emission we boost the GRB population statistics by a factor of 5, rule out some models utilized to explain deficiencies in GRB formation rate modelling, and constrain more tightly some of the observed parameters of GRB behaviour.
76 - Z. B. Zhang , M. Jiang , Y. Zhang 2020
Owing to narrow energy band of textit{Swift}/BAT, several urgent issues are required to pay more attentions but unsolved so far. We systematically study the properties of a refined sample of 283 textit{Swift}/BAT gamma-ray bursts with well-measured spectral peak energy ($E_{text p}$) at a high confidence level larger than 3$sigma$. It is interestingly found that duration ($T_{90}$) distribution of textit{Swift} bursts still exhibits an evident bimodality with a more reliable boundary of $T_{90}simeq$1.06 s instead of 2 s for previously contaminated samples including bursts without well-peaked spectra, which is very close to $sim$1.27 s and $sim$0.8 s suggested by some authors for Fermi/GBM and textit{Swift}/BAT catalogs, respectively. The textit{Swift}/BAT short and long bursts have comparable mean $E_{text p}$ values of $87^{+112}_{-49}$ and $85^{+101}_{-46}$ keV in each, similar to what found for both types of BATSE bursts, which manifests the traditional short-hard/long-soft scheme may not be tenable for the certain energy window of a detector. In statistics, we also investigate the consistency of distinct methods for the $E_{text p}$ estimates and find that Bayesian approach and BAND function can always give consistent evaluations. In contrast, the frequently-used cut-off power-law model matches two other methods for lower $E_{text p}$ and will overestimate the $E_{text p}$ more than 70% as $E_{text p}>$100 keV. Peak energies of X-ray flashes, X-ray rich bursts and classical gamma-ray bursts could have an evolutionary consequence from thermal-dominated to non-thermal-dominated radiation mechanisms. Finally, we find that the $E_{text p}$ and the observed fluence ($S_{gamma}$) in the observer frame are correlated as $E_psimeq [S_{gamma}/(10^{-5} erg cm^{-2})]^{0.28}times 117.5^{+44.7}_{-32.4}$ keV proposed to be an useful indicator of GRB peak energies.
We perform a comprehensive stacking analysis of data collected by the Fermi Large Area Telescope (LAT) of gamma-ray bursts (GRB) localized by the Swift spacecraft, which were not detected by the LAT but which fell within the instruments field of view at the time of trigger. We examine a total of 79 GRBs by comparing the observed counts over a range of time intervals to that expected from designated background orbits, as well as by using a joint likelihood technique to model the expected distribution of stacked counts. We find strong evidence for subthreshold emission at MeV to GeV energies using both techniques. This observed excess is detected during intervals that include and exceed the durations typically characterizing the prompt emission observed at keV energies and lasts at least 2700 s after the co-aligned burst trigger. By utilizing a novel cumulative likelihood analysis, we find that although a bursts prompt gamma-ray and afterglow X-ray flux both correlate with the strength of the subthreshold emission, the X-ray afterglow flux measured by Swifts X-ray Telescope (XRT) at 11 hr post trigger correlates far more significantly. Overall, the extended nature of the subthreshold emission and its connection to the bursts afterglow brightness lend further support to the external forward shock origin of the late-time emission detected by the LAT. These results suggest that the extended high-energy emission observed by the LAT may be a relatively common feature but remains undetected in a majority of bursts owing to instrumental threshold effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا