Do you want to publish a course? Click here

On Spectral Peak Energy of Swift Gamma-Ray Bursts

77   0   0.0 ( 0 )
 Added by Zhi-Bin Zhang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Owing to narrow energy band of textit{Swift}/BAT, several urgent issues are required to pay more attentions but unsolved so far. We systematically study the properties of a refined sample of 283 textit{Swift}/BAT gamma-ray bursts with well-measured spectral peak energy ($E_{text p}$) at a high confidence level larger than 3$sigma$. It is interestingly found that duration ($T_{90}$) distribution of textit{Swift} bursts still exhibits an evident bimodality with a more reliable boundary of $T_{90}simeq$1.06 s instead of 2 s for previously contaminated samples including bursts without well-peaked spectra, which is very close to $sim$1.27 s and $sim$0.8 s suggested by some authors for Fermi/GBM and textit{Swift}/BAT catalogs, respectively. The textit{Swift}/BAT short and long bursts have comparable mean $E_{text p}$ values of $87^{+112}_{-49}$ and $85^{+101}_{-46}$ keV in each, similar to what found for both types of BATSE bursts, which manifests the traditional short-hard/long-soft scheme may not be tenable for the certain energy window of a detector. In statistics, we also investigate the consistency of distinct methods for the $E_{text p}$ estimates and find that Bayesian approach and BAND function can always give consistent evaluations. In contrast, the frequently-used cut-off power-law model matches two other methods for lower $E_{text p}$ and will overestimate the $E_{text p}$ more than 70% as $E_{text p}>$100 keV. Peak energies of X-ray flashes, X-ray rich bursts and classical gamma-ray bursts could have an evolutionary consequence from thermal-dominated to non-thermal-dominated radiation mechanisms. Finally, we find that the $E_{text p}$ and the observed fluence ($S_{gamma}$) in the observer frame are correlated as $E_psimeq [S_{gamma}/(10^{-5} erg cm^{-2})]^{0.28}times 117.5^{+44.7}_{-32.4}$ keV proposed to be an useful indicator of GRB peak energies.

rate research

Read More

115 - L. Nava 2011
We use a nearly complete sample of Gamma Ray Bursts (GRBs) detected by the Swift satellite to study the correlations between the spectral peak energy Ep of the prompt emission, the isotropic energetics Eiso and the isotropic luminosity Liso. This GRB sample is characterized by a high level of completeness in redshift (90%). This allows us to probe in an unbiased way the issue related to the physical origin of these correlations against selection effects. We find that one burst, GRB 061021, is an outlier to the Ep-Eiso correlation. Despite this case, we find strong Ep-Eiso and Ep-Liso correlations for the bursts of the complete sample. Their slopes, normalisations and dispersions are consistent with those found with the whole sample of bursts with measured redshift and Ep. This means that the biases present in the total sample commonly used to study these correlations do not affect their properties. Finally, we also find no evolution with redshift of the Ep-Eiso and Ep-Liso correlations.
86 - I. Horvath , B. G. Toth 2016
Decades ago two classes of gamma-ray bursts were identified and delineated as having durations shorter and longer than about 2 s. Subsequently indications also supported the existence of a third class. Using maximum likelihood estimation we analyze the duration distribution of 888 Swift BAT bursts observed before October 2015. Fitting three log-normal functions to the duration distribution of the bursts provides a better fit than two log-normal distributions, with 99.9999% significance. Similarly to earlier results, we found that a fourth component is not needed. The relative frequencies of the distribution of the groups are 8% for short, 35% for intermediate and 57% for long bursts which correspond to our previous results. We analyse the redshift distribution for the 269 GRBs of the 888 GRBs with known redshift. We find no evidence for the previously suggested difference between the long and intermediate GRBs redshift distribution. The observed redshift distribution of the 20 short GRBs differs with high significance from the distributions of the other groups.
We collect and reanalyze about 200 GRB data of prompt-emission with known redshift observed until the end of 2009, and select 101 GRBs which were well observed to have good spectral parameters to determine the spectral peak energy ($E_p$), 1-second peak luminosity ($L_p$) and isotropic energy ($E_{rm iso}$). Using our newly-constructed database with 101 GRBs, we first revise the $E_p$--$L_p$ and $E_p$--$E_{rm iso}$ correlations. The correlation coefficients of the revised correlations are 0.889 for 99 degree of freedom for the $E_p$--$L_p$ correlation and 0.867 for 96 degree of freedom for the $E_p$--$E_{rm iso}$ correlation. These values correspond to the chance probability of $2.18 times 10^{-35}$ and $4.27 times 10^{-31}$, respectively. It is a very important issue whether these tight correlations are intrinsic property of GRBs or caused by some selection effect of observations. In this paper, we examine how the truncation of the detector sensitivity affects the correlations, and we conclude they are surely intrinsic properties of GRBs. Next we investigate origins of the dispersion of the correlations by studying their brightness and redshift dependence. Here the brightness (flux or fluence) dependence would be regarded as an estimator of the bias due to the detector threshold. We find a weak fluence-dependence in the $E_p$--$E_{rm iso}$ correlations and a redshift dependence in the $E_p$--$L_p$ correlation both with 2 $sigma$ statistical level. These two effects may contribute to the dispersion of the correlations which is larger than the statistical uncertainty. We discuss a possible reason of these dependence and give a future prospect to improve the correlations.
We present the results of sixteen Swift-triggered GRB follow-up observations taken with the VERITAS telescope array from January, 2007 to June, 2009. The median energy threshold and response time of these observations was 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter time scale determined by the maximum VERITAS sensitivity to a burst with a t^-1.5 time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope (LAT) on-board the Fermi satellite. No significant VHE gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light (EBL) and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.
67 - C. Guidorzi 2016
Timing analysis is a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of GRBs. Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and to investigate the dominant variability timescales. Because of the limited duration and of the statistical properties, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature. We characterise the individual PDS of GRBs in terms of a stochastic process, and carry out for the first time a systematic search for periodic signals and for a link between the PDS and other observables. We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study 215 bright long GRBs detected with the Swift Burst Alert Telescope from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Two classes of GRBs emerge: with or without a unique dominant timescale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond-dominant timescales and duration longer than a few tens of seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for a periodic signal at ~3 sigma (Gaussian) significance, corresponding to a multitrial chance probability of ~1%. Thus, we found no compelling evidence for periodic signals. The analogy between the PDS of GRBs and of AGNs could tentatively indicate similar stochastic processes that rule BH accretion across different BH mass scales and objects. In addition, we find evidence that short dominant timescales and duration are not completely independent of each other, in contrast with commonly accepted paradigms (abridged).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا