No Arabic abstract
On the road of searching for Majorana zero modes (MZMs) in topological insulator-based Josephson junctions, a highly-sought signature is the protected full transparency of electron transport through the junctions due to the existence of the MZMs, associated with complete gap closing between the electron-like and hole-like Andreev bound states (ABSs). Here, we present direct experimental evidence of gap closing and full transparency in single Josephson junctions constructed on the surface of three-dimensional topological insulator (3D TI) Bi$_2$Te$_3$. Our results demonstrate that the 2D surface of 3D TIs provides a promising platform for hosting and manipulating MZMs.
Quasi-1D nanowires of topological insulators are emerging candidate structures in superconductor hybrid architectures for the realization of Majorana fermion based quantum computation schemes. It is however technically difficult to both fabricate as well as identify the 1D limit of topological insulator nanowires. Here, we investigated selectively-grown Bi$_2$Te$_3$ topological insulator nanoribbons and nano Hall bars at cryogenic temperatures for their topological properties. The Hall bars are defined in deep-etched Si$_3$N$_4$/SiO$_2$ nano-trenches on a silicon (111) substrate followed by a selective area growth process via molecular beam epitaxy. The selective area growth is beneficial to the device quality, as no subsequent fabrication needs to be performed to shape the nanoribbons. Transmission line measurements are performed to evaluate contact resistances of Ti/Au contacts applied as well as the specific resistance of the Bi$_2$Te$_3$ binary topological insulator. In the diffusive transport regime of these unintentionally $n$-doped Bi$_2$Te$_3$ topological insulator nano Hall bars, we identify distinguishable electron trajectories by analyzing angle-dependent universal conductance fluctuation spectra. When the sample is tilted from a perpendicular to a parallel magnetic field orientation, these high frequent universal conductance fluctuations merge with low frequent Aharonov-Bohm type oscillations originating from the topologically protected surface states encircling the nanoribbon cross section. For 500 nm wide Hall bars we also identify low frequent Shubnikov-de Haas oscillations in the perpendicular field orientation, that reveal a topological high-mobility 2D transport channel, partially decoupled from the bulk of the material.
Here we report on Landau level spectroscopy in magnetic fields up to 34 T performed on a thin film of topological insulator Bi$_2$Te$_3$ epitaxially grown on a BaF$_2$ substrate. The observed response is consistent with the picture of a direct-gap semiconductor in which charge carriers closely resemble massive Dirac particles. The fundamental band gap reaches $E_g=(175pm 5)$~meV at low temperatures and it is not located on the trigonal axis, thus displaying either six or twelvefold valley degeneracy. Notably, our magneto-optical data do not indicate any band inversion. This suggests that the fundamental band gap is relatively distant from the $Gamma$ point where profound inversion exists andgives rise to relativistic-like surface states of Bi$_2$Te$_3$.
Scanning tunneling spectroscopy studies on high-quality Bi$_2$Te$_3$ crystals exhibit perfect correspondence to ARPES data, hence enabling identification of different regimes measured in the local density of states (LDOS). Oscillations of LDOS near a step are analyzed. Within the main part of the surface band oscillations are strongly damped, supporting the hypothesis of topological protection. At higher energies, as the surface band becomes concave, oscillations appear which disperse with a particular wave-vector that may result from an unconventional hexagonal warping term.
Despite extensive experimental and theoretical efforts, the important issue of the effects of surface magnetic impurities on the topological surface state of a topological insulator (TI) remains unresolved. We elucidate the effects of Cr impurities on epitaxial thin films of (Bi$_{0.5}$Sb$_{0.5}$)$_{2}$Te$_{3}$: Cr adatoms are incrementally deposited onto the TI held in ultrahigh vacuum at low temperatures, and textit{in situ} magnetoconductivity and Hall effect measurements are performed at each increment with electrostatic gating. In the experimentally identified surface transport regime, the measured minimum electron density shows a non-monotonic evolution with the Cr density ($n_{mathrm{Cr}}$): it first increases and then decreases with $n_{mathrm{Cr}}$. This unusual behavior is ascribed to the dual roles of the Cr as ionized impurities and electron donors, having competing effects of enhancing and decreasing the electronic inhomogeneities in the surface state at low and high $n_{mathrm{Cr}}$ respectively. The magnetoconductivity is obtained for different $n_{mathrm{Cr}}$ on one and the same sample, which yields clear evidence that the weak antilocalization effect persists and the surface state remains gapless up to the highest $n_{mathrm{Cr}}$, contrary to the expectation that the deposited Cr should break the time reversal symmetry and induce a gap opening at the Dirac point.
Three-dimensional topological insulators (TIs) host helical Dirac surface states at the interface with a trivial insulator. In quasi-one-dimensional TI nanoribbon structures the wave function of surface charges extends phase-coherently along the perimeter of the nanoribbon, resulting in a quantization of transverse surface modes. Furthermore, as the inherent spin-momentum locking results in a Berry phase offset of $pi$ of self-interfering charge carriers an energy gap within the surface state dispersion appears and all states become spin-degenerate. We investigate and compare the magnetic field dependent surface state dispersion in selectively deposited Bi$_2$Te$_3$ TI micro- and nanoribbon structures by analysing the gate voltage dependent magnetoconductance at cryogenic temperatures. Hall measurements on microribbon field effect devices show a high bulk charge carrier concentration and electrostatic simulations show an inhomogeneous gate potential profile on the perimeter of the TI ribbon. In nanoribbon devices we identify a magnetic field dependency of the surface state dispersion as it changes the occupation of transverse subbands close to the Fermi energy. We quantify the energetic spacing in between these subbands by measuring the conductance as a function of the applied gate potential and use an electrostatic model that treats the inhomogeneous gate profile and the initial charge carrier densities on the top and bottom surface. In the gate voltage dependent transconductance we find oscillations that change their relative phase by $pi$ at half-integer values of the magnetic flux quantum applied coaxial to the nanoribbon providing evidence for a magnetic flux dependent topological phase transition in narrow, selectively deposited TI nanoribbon devices.