Do you want to publish a course? Click here

Isospin Mixing Reveals $^{30}$P($p,gamma$)$^{31}$S Resonance Influencing Nova Nucleosynthesis

60   0   0.0 ( 0 )
 Added by Michael Bennett
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

The thermonuclear $^{30}$P($p,gamma$)$^{31}$S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key $^{31}$S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the $beta$ decay of $^{31}$Cl, we have observed the $beta$-delayed $gamma$ decay of a $^{31}$S state at $E_x = 6390.2(7)$ keV, with a $^{30}$P($p,gamma$)$^{31}$S resonance energy of $E_r = 259.3(8)$ keV, in the middle of the $^{30}$P($p,gamma$)$^{31}$S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state (IAS) at $E_x = 6279.0(6)$ keV, giving it an unambiguous spin and parity of $3/2^+$ and making it an important $l = 0$ resonance for proton capture on $^{30}$P.



rate research

Read More

103 - D. Kahl , H. Yamaguchi , S. Kubono 2017
Background: Type I x-ray bursts are the most frequent thermonuclear explosions in the galaxy, resulting from thermonuclear runaway on the surface of an accreting neutron star. The $^{30}$S($alpha$,p) reaction plays a critical role in burst models, yet insufficient experimental information is available to calculate a reliable, precise rate for this reaction. Purpose: Our measurement was conducted to search for states in $^{34}$Ar and determine their quantum properties. In particular, natural-parity states with large $alpha$-decay partial widths should dominate the stellar reaction rate. Method: We performed the first measurement of $^{30}$S+$alpha$ resonant elastic scattering up to a center-of-mass energy of 5.5 MeV using a radioactive ion beam. The experiment utilized a thick gaseous active target system and silicon detector array in inverse kinematics. Results: We obtained an excitation function for $^{30}$S($alpha$,$alpha$) near $150^{circ}$ in the center-of-mass frame. The experimental data were analyzed with an $R$-Matrix calculation, and we observed three new resonant patterns between 11.1 and 12.1 MeV, extracting their properties of resonance energy, widths, spin, and parity. Conclusions: We calculated the resonant thermonuclear reaction rate of $^{30}$S($alpha$,p) based on all available experimental data of $^{34}$Ar and found an upper limit about one order of magnitude larger than a rate determined using a statistical model. The astrophysical impact of these two rates has been investigated through one-zone postprocessing type I x-ray burst calculations. We find that our new upper limit for the $^{30}$S($alpha$,p)$^{33}$Cl rate significantly affects the predicted nuclear energy generation rate during the burst.
The nuclear level density and the $gamma$-ray strength function have been extracted for $^{89}$Y, using the Oslo Method on $^{89}$Y($p,p gamma$)$^{89}$Y coincidence data. The $gamma$-ray strength function displays a low-energy enhancement consistent with previous observations in this mass region ($^{93-98}$Mo). Shell-model calculations give support that the observed enhancement is due to strong, low-energy $M1$ transitions at high excitation energies. The data were further used as input for calculations of the $^{88}$Sr($p,gamma$)$^{89}$Y and $^{88}$Y($n,gamma$)$^{89}$Y cross sections with the TALYS reaction code. Comparison with cross-section data, where available, as well as with values from the BRUSLIB library, shows a satisfying agreement.
The COMPTEL instrument performed the first mapping of the 1.809 MeV photons in the Galaxy, triggering considerable interest in determing the sources of interstellar 26Al. The predicted 26Al is too low compared to the observation, for a better understanding more accurate rates for the 25Mg(p; gamma)26Al reaction are required. The 25Mg(p;gamma)26Al reaction has been investigated at the resonances at Er= 745; 418; 374; 304 keV at Ruhr-Universitat-Bochum using a Tandem accelerator and a 4piNaI detector. In addition the resonance at Er = 189 keV has been measured deep underground laboratory at Laboratori Nazionali del Gran Sasso, exploiting the strong suppression of cosmic background. This low resonance has been studied with the 400 kV LUNA accelerator and a HPGe detector. The preliminary results of the resonance strengths will be reported.
We report the first experimental measurements of the nine 1-fold differential cross sections for the $gamma p to pi^+pi^-p$ reaction, obtained with the CLAS detector at Jefferson Laboratory. The measurements cover the invariant mass range of the final state hadrons from 1.6~GeV~$<W<$~2.0~GeV. For the first time the photocouplings of all prominent nucleon resonances in this mass range have been extracted from this exclusive channel. Photoproduction of two charged pions is of particular importance for the evaluation of the photocouplings for the $Delta(1620)1/2^-$, $Delta(1700)3/2^-$, $N(1720)3/2^+$, and $Delta(1905)5/2^+$ resonances, which have dominant decays into the $pipi N$ final states rather than the more extensively studied single meson decay channels.
High-statistics differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta-prime have been measured using the CLAS at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the worlds large-angle results by approximately 300 MeV. These new data, in particular the eta-prime measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا