No Arabic abstract
Formation and evolution of galaxies have been a central driving force in the studies of galaxies and cosmology. Recent studies provided a global picture of cosmic star formation history. However, what drives the evolution of star formation activities in galaxies has long been a matter of debate. The key factor of the star formation is the transition of hydrogen from atomic to molecular state, since the star formation is associated with the molecular phase. This transition is also strongly coupled with chemical evolution, because dust grains, i.e., tiny solid particles of heavy elements, play a critical role in molecular formation. Therefore, a comprehensive understanding of neutral-molecular gas transition, star formation and chemical enrichment is necessary to clarify the galaxy formation and evolution. Here we present the activity of SKA-JP galaxy evolution sub-science working group (subSWG) Our activity is focused on three epochs: z sim 0, 1, and z > 3. At z sim 0, we try to construct a unified picture of atomic and molecular hydrogen through nearby galaxies in terms of metallicity and other various ISM properties. Up to intermediate redshifts z sim 1, we explore scaling relations including gas and star formation properties, like the main sequence and the Kennicutt-Schmidt law of star forming galaxies. To connect the global studies with spatially-resolved investigations, such relations will be plausibly a viable way. For high redshift objects, the absorption lines of HI 21-cm line will be a very promising observable to explore the properties of gas in galaxies. By these studies, we will surely witness a real revolution in the studies of galaxies by SKA.
One of the key science drivers for the development of the SKA is to observe the neutral hydrogen, HI, in galaxies as a means to probe galaxy evolution across a range of environments over cosmic time. Over the past decade, much progress has been made in theoretical simulations and observations of HI in galaxies. However, recent HI surveys on both single dish radio telescopes and interferometers, while providing detailed information on global HI properties, the dark matter distribution in galaxies, as well as insight into the relationship between star formation and the interstellar medium, have been limited to the local universe. Ongoing and upcoming HI surveys on SKA pathfinder instruments will extend these measurements beyond the local universe to intermediate redshifts with long observing programmes. We present here an overview of the HI science which will be possible with the increased capabilities of the SKA and which will build upon the expected increase in knowledge of HI in and around galaxies obtained with the SKA pathfinder surveys. With the SKA1 the greatest improvement over our current measurements is the capability to image galaxies at reasonable linear resolution and good column density sensitivity to much higher redshifts (0.2 < z < 1.7). So one will not only be able to increase the number of detections to study the evolution of the HI mass function, but also have the sensitivity and resolution to study inflows and outflows to and from galaxies and the kinematics of the gas within and around galaxies as a function of environment and cosmic time out to previously unexplored depths. The increased sensitivity of SKA2 will allow us to image Milky Way-size galaxies out to redshifts of z=1 and will provide the data required for a comprehensive picture of the HI content of galaxies back to z~2 when the cosmic star formation rate density was at its peak.
As we strive to understand how galaxies evolve it is crucial that we resolve physical processes and test emerging theories in nearby systems that we can observe in great detail. Our own Galaxy, the Milky Way, and the nearby Magellanic Clouds provide unique windows into the evolution of galaxies, each with its own metallicity and star formation rate. These laboratories allow us to study with more detail than anywhere else in the Universe how galaxies acquire fresh gas to fuel their continuing star formation, how they exchange gas with the surrounding intergalactic medium, and turn warm, diffuse gas into molecular clouds and ultimately stars. The $lambda$21-cm line of atomic hydrogen (HI) is an excellent tracer of these physical processes. With the SKA we will finally have the combination of surface brightness sensitivity, point source sensitivity and angular resolution to transform our understanding of the evolution of gas in the Milky Way, all the way from the halo down to the formation of individual molecular clouds.
We thoroughly explore the properties of (sub)-millimeter (mm) selected galaxies (SMGs) in the Shark semi-analytic model of galaxy formation. Compared to observations, the predicted number counts at wavelengths (lambda) 0.6-2mm and redshift distributions at 0.1-2mm, agree well. At the bright end (>1mJy), Shark galaxies are a mix of mergers and disk instabilities. These galaxies display a stacked FUV-to-FIR spectrum that agrees well with observations. We predict that current optical/NIR surveys are deep enough to detect bright (>1mJy) lambda=0.85-2mm-selected galaxies at z<5, but too shallow to detect counterparts at higher redshift. A James Webb Space Telescope 10,000s survey should detect all counterparts for galaxies with $S_{rm 0.85mm}>0.01$mJy. We predict SMGs disks contribute significantly (negligibly) to the rest-frame UV (IR). We investigate the 0<z<6 evolution of the intrinsic properties of >1mJy lambda=0.85-2mm-selected galaxies finding their: (i) stellar masses are $>10^{10.2}M_{odot}$, with the 2mm ones tracing the most massive galaxies ($>10^{11}M_{odot}$); (ii) specific star formation rates (SFR) are mildly (~3-10x) above the main sequence (MS); (iii) host halo masses are $gtrsim 10^{12.3}M_{odot}$, with 2mm galaxies tracing the most massive halos (proto-clusters); (iv) SMGs have lower dust masses ($approx 10^{8}M_{odot}$), higher dust temperatures ($approx 40-45$K) and higher rest-frame V-band attenuation (>1.5) than MS galaxies; (v) sizes decrease with redshift, from 4kpc at z=1 to <1kpc at z=4; (vi) the Carbon Monoxide line spectra of $S_{rm 0.85mm}>1$mJy sources peak at 4->3. Finally, we study the contribution of SMGs to the molecular gas and cosmic SFR density at 0<z<10, finding that >1mJy sources make a negligible contribution at z>3 and z>5, respectively, suggesting current observations have unveiled the majority of the star formation at 0<z<10.
The Square Kilometre Array will revolutionize pulsar studies with its wide field-of-view, wide-band observation and high sensitivity, increasing the number of observable pulsars by more than an order of magnitude. Pulsars are of interest not only for the study of neutron stars themselves but for their usage as tools for probing fundamental physics such as general relativity, gravitational waves and nuclear interaction. In this article, we summarize the activity and interests of SKA-Japan Pulsar Science Working Group, focusing on an investigation of modified gravity theory with the supermassive black hole in the Galactic Centre, gravitational-wave detection from cosmic strings and binary supermassive black holes, a study of the physical state of plasma close to pulsars using giant radio pulses and determination of magnetic field structure of Galaxy with pulsar pairs.
Over the next decade, observations conducted with ALMA and the SKA will reveal the process of mass assembly and accretion onto young stars and will be revolutionary for studies of star formation. Here we summarise the capabilities of ALMA and discuss recent results from its early science observations. We then review infrared and radio variability observations of both young low-mass and high-mass stars. A time domain SKA radio continuum survey of star forming regions is then outlined. This survey will produce radio light-curves for hundreds of young sources, providing for the first time a systematic survey of radio variability across the full range of stellar masses. These light-curves will probe the magnetospheric interactions of young binary systems, the origins of outflows, trace episodic accretion on the central sources and potentially constrain the rotation rates of embedded sources.