No Arabic abstract
Anderson localisation is an important phenomenon arising in many areas of physics, and here we explore it in the context of quantum information devices. Finite dimensional spin chains have been demonstrated to be important devices for quantum information transport, and in particular can be engineered to allow for perfect state transfer (PST). Here we present extensive investigations of disordered PST spin chains, demonstrating spatial localisation and transport retardation effects, and relate these effects to conventional Anderson localisation. We provide thresholds for Anderson localisation in these finite quantum information systems for both the spatial and the transport domains. Finally, we consider the effect of disorder on the eigenstate and energy spectrum of our Hamiltonian, where results support our conclusions on the presence of Anderson localisation.
Although a complete picture of the full evolution of complex quantum systems would certainly be the most desirable goal, for particular Quantum Information Processing schemes such an analysis is not necessary. When quantum correlations between only specific elements of a many-body system are required for the performance of a protocol, a more distinguished and specialised investigation is helpful. Here, we provide a striking example with the achievement of perfect state transfer in a spin chain without state initialisation, whose realisation has been shown to be possible in virtue of the correlations set between the first and last spin of the transmission-chain.
We demonstrate that perfect state transfer can be achieved using an engineered spin chain and clean local end-chain operations, without requiring the initialization of the state of the medium nor fine tuning of control-pulses. This considerably relaxes the prerequisites for obtaining reliable transfer of quantum information across interacting-spin systems. Moreover, it allows us to shed light on the interplay among purity, entanglement and operations on a class of many-body systems potentially useful for quantum information processing tasks.
The transfer of an unknown quantum state, from a sender to a receiver, is one of the main requirements to perform quantum information processing tasks. In this respect, the state transfer of a single qubit by means of spin chains has been widely discussed, and many protocols aiming at performing this task have been proposed. Nevertheless, the state transfer of more than one qubit has not been properly addressed so far. In this paper, we present a modified version of a recently proposed quantum state transfer protocol [Phys. Rev. A 87, 062309 (2013)] to obtain a quantum channel for the transfer of two qubits. This goal is achieved by exploiting Rabi-like oscillations due to excitations induced by means of strong and localized magnetic fields. We derive exact analytical formulae for the fidelity of the quantum state transfer, and obtain a high-quality transfer for general quantum states as well as for specific classes of states relevant for quantum information processing.
We propose a protocol for state transfer and entanglement generation between two distant spin qubits (sender and receiver) that have different energies. The two qubits are permanently coupled to a far off-resonant spin-chain, and the qubit of the sender is driven by an external field, which provides the energy required to bridge the energy gap between the sender and the receiver. State transfer and entanglement generation are achieved via virtual single-photon and multi-photon transitions to the eigenmodes of the channel.
We study transfer of a quantum state through XX spin chains with static imperfections. We combine the two standard approaches for state transfer based on (i) modulated couplings between neighboring spins throughout the spin chain and (ii) weak coupling of the outermost spins to an unmodulated spin chain. The combined approach allows us to design spin chains with modulated couplings and localized boundary states, permitting high-fidelity state transfer in the presence of random static imperfections of the couplings. The modulated couplings are explicitly obtained from an exact algorithm using the close relation between tridiagonal matrices and orthogonal polynomials [Linear Algebr. Appl. 21, 245 (1978)]. The implemented algorithm and a graphical user interface for constructing spin chains with boundary states (spinGUIn) are provided as Supplemental Material.