Do you want to publish a course? Click here

Modelling the number density of Halpha emitters for future spectroscopic near-IR space missions

64   0   0.0 ( 0 )
 Added by Lucia Pozzetti
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The future space missions Euclid and WFIRST-AFTA will use the Halpha emission line to measure the redshifts of tens of millions of galaxies. The Halpha luminosity function at z>0.7 is one of the major sources of uncertainty in forecasting cosmological constraints from these missions. We construct unified empirical models of the Halpha luminosity function spanning the range of redshifts and line luminosities relevant to the redshift surveys proposed with Euclid and WFIRST-AFTA. By fitting to observed luminosity functions from Halpha surveys, we build three models for its evolution. Different fitting methodologies, functional forms for the luminosity function, subsets of the empirical input data, and treatment of systematic errors are considered to explore the robustness of the results. Functional forms and model parameters are provided for all three models, along with the counts and redshift distributions up to z~2.5 for a range of limiting fluxes (F_Halpha>0.5 - 3 x 10^-16 erg cm^-2 s^-1) that are relevant for future space missions. For instance, in the redshift range 0.90<z<1.8, our models predict an available galaxy density in the range 7700--13300 and 2000--4800 deg^-2 respectively at fluxes above F_Halpha>1 and 2 x 10^-16 erg cm^-2 s^-1, and 32000--48000 for F_Halpha>0.5 x 10^-16 erg cm^-2 s^-1 in the extended redshift range 0.40<z<1.8. We also consider the implications of our empirical models for the total Halpha luminosity density of the Universe, and the closely related cosmic star formation history.



rate research

Read More

We present near-infrared emission line counts and luminosity functions from the HST WFC3 Infrared Spectroscopic Parallels (WISP) program for 29 fields (0.037 deg^2) observed using both the G102 and G141 grisms. Altogether we identify 1048 emission line galaxies with observed equivalent widths greater than 40 Angstroms, 467 of which have multiple detected emission lines. The WISP survey is sensitive to fainter flux levels (3-5x10^-17 ergs/s/cm^2) than the future space near-infrared grism missions aimed at baryonic acoustic oscillation cosmology (1-4x10^-16 ergs/s/cm^2), allowing us to probe the fainter emission line galaxies that the shallower future surveys may miss. Cumulative number counts of 0.7<z<1.5 galaxies reach 10,000 deg^-2 above an H-alpha flux of 2x10^-16 ergs/s/cm^2. H-alpha-emitting galaxies with comparable [OIII] flux are roughly 5 times less common than galaxies with just H-alpha emission at those flux levels. Galaxies with low H-alpha/[OIII] ratios are very rare at the brighter fluxes that future near-infrared grism surveys will probe; our survey finds no galaxies with H-alpha/[OIII] < 0.95 that have H-alpha flux greater than 3x10^-16 ergs/s/cm^2. Our H-alpha luminosity function contains a comparable number density of faint line emitters to that found by the NICMOS near-infrared grism surveys, but significantly fewer (factors of 3-4 less) high luminosity emitters. We also find that our high redshift (z=0.9-1.5) counts are in agreement with the high redshift (z=1.47) narrow band H-alpha survey of HiZELS (Sobral et al. 2013), while our lower redshift luminosity function (z=0.3-0.9) falls slightly below their z=0.84 result. The evolution in both the H-alpha luminosity function from z=0.3--1.5 and the [OIII] luminosity function from z=0.7-2.3 is almost entirely in the L* parameter, which steadily increases with redshift over those ranges.
We present a new technique for wide and shallow observations using the near-infrared channel of Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). Wide-field near-IR surveys with HST are generally inefficient, as guide star acquisitions make it impractical to observe more than one pointing per orbit. This limitation can be circumvented by guiding with gyros alone, which is possible as long as the telescope has three functional gyros. The method presented here allows us to observe mosaics of eight independent WFC3-IR pointings in a single orbit by utilizing the fact that HST drifts by only a very small amount in the 25 seconds between non-destructive reads of unguided exposures. By shifting the reads and treating them as independent exposures the full resolution of WFC3 can be restored. We use this drift and shift (DASH) method in the Cycle 23 COSMOS-DASH program, which will obtain 456 WFC3 $H_{160}$ pointings in 57 orbits, covering an area of 0.6 degree$^2$ in the COSMOS field down to $H_{160} = 25$. When completed, the program will more than triple the area of extra-galactic survey fields covered by near-IR imaging at HST resolution. We demonstrate the viability of the method with the first four orbits (32 pointings) of this program. We show that the resolution of the WFC3 camera is preserved, and that structural parameters of galaxies are consistent with those measured in guided observations.
Instrumentation techniques in the field of direct imaging of exoplanets have greatly advanced over the last two decades. Two of the four NASA-commissioned large concept studies involve a high-contrast instrument for the imaging and spectral characterization of exo-Earths from space: LUVOIR and HabEx. This whitepaper describes the status of 8 optical testbeds in the US and France currently in operation to experimentally validate the necessary technologies to image exo-Earths from space. They explore two complementary axes of research: (i) coronagraph designs and manufacturing and (ii) active wavefront correction methods and technologies. Several instrument architectures are currently being analyzed in parallel to provide more degrees of freedom for designing the future coronagraphic instruments. The necessary level of performance has already been demonstrated in-laboratory for clear off-axis telescopes (HabEx-like) and important efforts are currently in development to reproduce this accomplishment on segmented and/or on-axis telescopes (LUVOIR-like) over the next two years.
We exploit the synergy between low-resolution spectroscopy and photometric redshifts to study environmental effects on galaxy evolution in slitless spectroscopic surveys from space. As a test case, we consider the future Euclid Deep survey (~40deg$^2$), which combines a slitless spectroscopic survey limited at H$alpha$ flux $geq5times 10^{-17}$ erg cm$^{-2}$ s$^{-1}$ and a photometric survey limited in H-band ($Hleq26$). We use Euclid-like galaxy mock catalogues, in which we anchor the photometric redshifts to the 3D galaxy distribution of the available spectroscopic redshifts. We then estimate the local density contrast by counting objects in cylindrical cells with radius from 1 to 10 h$^{-1}$Mpc over the redshift range 0.9<z<1.8. We compare this density field with the one computed in a mock catalogue with the same depth as the Euclid Deep survey (H=26) but without redshift measurement errors. We find that our method successfully separates high from low density environments (the last from the first quintile of the density distribution), with higher efficiency at low redshift and large cell: the fraction of low density regions mistaken by high density peaks is <1% for all scales and redshifts explored, but for scales of 1 h$^{-1}$Mpc for which is a few percent. These results show that we can efficiently study environment in photometric samples if spectroscopic information is available for a smaller sample of objects that sparsely samples the same volume. We demonstrate that these studies are possible in the Euclid Deep survey, i.e. in a redshift range in which environmental effects are different from those observed in the local universe, hence providing new constraints for galaxy evolution models.
Atom interferometry represents a quantum leap in the technology for the ultra-precise monitoring of accelerations and rotations and, therefore, for all the science that relies on the latter quantities. These sensors evolved from a new kind of optics based on matter-waves rather than light-waves and might result in an advancement of the fundamental detection limits by several orders of magnitude. Matter-wave optics is still a young, but rapidly progressing science. The Space Atom Interferometer project (SAI), funded by the European Space Agency, in a multi-pronged approach aims to investigate both experimentally and theoretically the various aspects of placing atom interferometers in space: the equipment needs, the realistically expected performance limits and potential scientific applications in a micro-gravity environment considering all aspects of quantum, relativistic and metrological sciences. A drop-tower compatible prototype of a single-axis atom interferometry accelerometer is under construction. At the same time the team is studying new schemes, e.g. based on degenerate quantum gases as source for the interferometer. A drop-tower compatible atom interferometry acceleration sensor prototype has been designed, and the manufacturing of its subsystems has been started. A compact modular laser system for cooling and trapping rubidium atoms has been assembled. A compact Raman laser module, featuring outstandingly low phase noise, has been realized. Possible schemes to implement coherent atomic sources in the atom interferometer have been experimentally demonstrated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا