We give a complete characterization of pseudovarieties of semigroups whose finitely generated relatively free profinite semigroups are equidivisible. Besides the pseudovarieties of completely simple semigroups, they are precisely the pseudovarieties that are closed under Malcev product on the left by the pseudovariety of locally trivial semigroups. A further characterization which turns out to be instrumental is as the non-completely simple pseudovarieties that are closed under two-sided Karnofsky-Rhodes expansion.
This paper is a contribution to the theory of finite semigroups and their classification in pseudovarieties, which is motivated by its connections with computer science. The question addressed is what role can play the consideration of an order compatible with the semigroup operation. In the case of unions of groups, so-called completely regular semigroups, the problem of which new pseudovarieties appear in the ordered context is solved. As applications, it is shown that the lattice of pseudovarieties of ordered completely regular semigroups is modular and that taking the intersection with the pseudovariety of bands defines a complete endomorphism of the lattice of all pseudovarieties of ordered semigroups.
We show that if $mathsf V$ is a semigroup pseudovariety containing the finite semilattices and contained in $mathsf {DS}$, then it has a basis of pseudoidentities between finite products of regular pseudowords if, and only if, the corresponding variety of languages is closed under bideterministic product. The key to this equivalence is a weak generalization of the existence and uniqueness of $mathsf J$-reduced factorizations. This equational approach is used to address the locality of some pseudovarieties. In particular, it is shown that $mathsf {DH}capmathsf {ECom}$ is local, for any group pseudovariety $mathsf H$.
As an appropriate generalisation of the features of the classical (Schein) theory of representations of inverse semigroups in $mathscr{I}_{X}$, a theory of representations of inverse semigroups by homomorphisms into complete atomistic inverse algebras is developed. This class of inverse algebras includes partial automorphism monoids of entities such as graphs, vector spaces and modules. A workable theory of decompositions is reached; however complete distributivity is required for results approaching those of the classical case.
We present a survey of results on profinite semigroups and their link with symbolic dynamics. We develop a series of results, mostly due to Almeida and Costa and we also include some original results on the Schutzenberger groups associated to a uniformly recurrent set.
We study algebraic and topological properties of the convolution semigroups of probability measures on a topological groups and show that a compact Clifford topological semigroup $S$ embeds into the convolution semigroup $P(G)$ over some topological group $G$ if and only if $S$ embeds into the semigroup $exp(G)$ of compact subsets of $G$ if and only if $S$ is an inverse semigroup and has zero-dimensional maximal semilattice. We also show that such a Clifford semigroup $S$ embeds into the functor-semigroup $F(G)$ over a suitable compact topological group $G$ for each weakly normal monadic functor $F$ in the category of compacta such that $F(G)$ contains a $G$-invariant element (which is an analogue of the Haar measure on $G$).